Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/30951
|
Title: | 貝氏Weibull模式應用於加速壽命試驗 |
Authors: | 吳雅婷 Wu,Ya-Ting |
Contributors: | 陳麗霞 吳雅婷 Wu,Ya-Ting |
Keywords: | 加速壽命試驗 危險函數 概似函數 可靠度 區間資料 型一設限資料 蒙地卡羅法 Accelerated life testing hazard function maximum likelihood function reliability interval data type I censored data Markov Chain Monte Carlo methods |
Date: | 2003 |
Issue Date: | 2009-09-14 |
Abstract: | 本文所探討的中心為貝氏模型運用於加速壽命試驗,並且假設受測項目之壽命服從Weibull分配。加速實驗環境有三種,其中第二種環境代表正常狀態,採用加速壽命試驗的方式涵蓋了三種:固定應力、漸進之逐步應力和變量曲線之逐步應力。對於先驗參數,並不是直接給予特定的值,而是透過專家評估,給定各種環境之下的產品可靠度之中位數或百分位數,再利用這些資訊經過數值運算解出先驗參數。資料的型態分成兩種,一為區間資料,另一為型一設限資料,透過蒙地卡羅法模擬出後驗分配,並且估計正常環境狀態的可靠度。 This article develops a Bayes inference model for accelerated life testing assuming failure times at each stress level are Weibull distributed. Using the approach, there are three stressed to be used, and the three testing scenarios to be adapted are as follows:fixed-stress, progressive step-stress and profile step-stress. Prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known Markov Chain Monte Carlo methods to derive posterior approximations. |
Reference: | 1. Erkanli, A. and Merrick J. R., and Soyer R. (2002). Parametric and Semi-parametric Bayesian Models for Accelerated Life Tests. Manuscript. 2. Lawless J. F. (2003). Statistical Models and Methods for Lifetime Data. Wiley and Sons, New York. 3. Martz, H. F. and Waller, R. A. (1982). Bayesian Reliability Analysis. Wiley and Sons, New York. 4. Mazzuchi, T. A., Soyer, R., Vopatek, A. (1997). Linear Bayesian Inference for Accelerated Weibull Model. Lifetime Data Analysis, 3, 63-75. 5. Press S. James (2003). Subjective and Objective Bayesian Statistics. Wiley and Sons, New York. 6. Van Dorp, J. R, Mazzuchi, T. A., Fornell, G. E., and Pollock, L.R. (1996). A Bayes approach to step-stress accelerated life testing. IEEE Trans. Reliability 45 (3), 491-498. 7. Van Dorp, J. R. and Mazzuchi, T. A. (2000). Solving for the Parameters of Beta Distribution under two Quantile Constraints. J. Statist. Comput. Simulation 67, 189-201. 8. Van Dorp, J. R. and Mazzuchi, T. A. (2003a). A General Bayes Weibull Inference Model for Accelerated Life Testing. The George Washington University, Washington D. C., USA. 9. Van Dorp, J. R. and Mazzuchi, T. A. (2003b). Parameters Specification of the Beta Distribution and its Dirichlet Extensions Utilizing Quantiles. Beta Distributions and Its Applications, 29(1), 1-37. 10. Van Dorp, J. R. and Mazzuchi, T. A. (2004). A General Bayes Exponential Inference Model for Accelerated Life Testing. Journal of Statistical Planning and Inference, 119, 55-74. 11. Wilks, S. S. (1962). Mathematical Statistics. Wiley and Sons, New York. |
Description: | 碩士 國立政治大學 統計研究所 92354023 92 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0923540231 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 203 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|