English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52167703      Online Users : 851
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/30932
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30932


    Title: 高密度寡核甘酸基因陣列晶片正規化方法之研究
    The Research of Normalization Methods for High Density Oligonucleotide Array
    Authors: 薛慧芬
    Hsueh ,Hui-Fen
    Contributors: 薛慧敏
    Hsueh ,Huey-Miin
    薛慧芬
    Hsueh ,Hui-Fen
    Keywords: 寡核甘酸
    正規化
    Oligonucleotide
    Normalization
    Date: 2004
    Issue Date: 2009-09-14
    Abstract: 高密度寡核甘酸基因陣列實驗是新的生物技術,可在一個晶片上蒐集到數千至上萬個基因資料,資料處理的過程相當繁複,包括背景訊號的修正、正規化、探針背景的修正及探針組資料的整合,本研究首先將介紹各資料處理步驟。其中正規化的目的是要修正資料中由實驗產生的系統化變異,去除實驗誤差,使資料更為純淨,則後續所做的統計分析才會更為精確。之後再詳細介紹三種正規化方法,包括:尺度調整法、循環平滑調整法及百分位調整法。並將以一組實際資料來說明正規化後的結果。最終採取電腦模擬的方式,以平均四分位距、平均標準差、Diff統計量及離群值的個數這四個量化準則,來研究各正規化方法的效果,以及比較這三種正規化方法的優劣,同時也將探討此四種準則的適當性。
    High-density oligonucleotide array gene experiment is a new biological technology. More than thousands of gene data can be obtained in an array. The data processing includes background correction, normalization, probe specific background correction and summarizing the probe set value into one expression measure. The goal of normalization is to remove the systematic variation induced in the experiment while keeping the biological variation of interest. Using the purified data, one will obtain more accurate conclusions in subsequent statistical analysis. Firstly, we introduce the data processing procedures. Three normalization methods, which include Scaling, Cyclic Loess and Quantile, are explained in detail and illustrated by a real data set. Moreover, a simulation study is conducted to compare the three methods. Four quantities, Mean of IQR, Mean of Standard Deviation, Diff Statistics and Outlier, are proposed for assessment. Not only the performances of the three normalization methods but also the properties of the four proposed criteria are given and studied in this research.
    Reference: 1. Affymetrix(1999). Affymetrix Microarray Suite User Guide. Affymetrix, Santa Clara, CA, version 4 edition.
    2. Affymetrix(2002). Statistical Algorithms Description Document. Technical report, Affymetrix .
    3. Astrand, M.(2003). Contrast normalization of oligonucleotide arrays. Journal of Computational Biology, 10(1), 95-102.
    4. Bolstad, B., Irizarry, R., Astrand, M., and Speed, T.(2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193.
    5. Cleveland, W. S. and Devlin, S. J. (1988). Locally-weighted regression: An approach to regression analysis by local fitting, Journal of the American Statistical Association, 83,596-610.
    6. Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K., Scherf, U., and Speed, T.(2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4, 249-264.
    7. Lazaridis, E., Sinibaldi, D., Bloom, G., Mane, S., and Jove, R.(2002). A simple method to improve probe set estimates form oligonucleotide arrays. Math Biostatistics, 176(1), 53-58.
    8. Li, C. and Wong, W.(2001a). Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Science U S A, 98, 31-36.
    9. Li, C. and Wong, W.(2001b). Model-based analysis of oligonucleotide arrays: Model Validation Design Issues and Standard Error Application. Genome Biology, 2, 1-11.
    10. Naef, F., Lim, D.A., Patil, N., and Magnasco, M.O.(2001). From features to expression: High density oligonucleotide array analysis revisited. Tech Report 1, 1-9.
    11. Workman, C., Saxild, J., Nielsen, C., Brunak, S., and Knudsen, S.(2002). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biology, 3(9), 1-16.
    12. Yang, Y.H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., Speed, T. (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30(4), e15.
    13. http://www.affymetrix.com/index.affx
    14. http://www.genelogic.com/media/studies/index.cfm
    Description: 碩士
    國立政治大學
    統計研究所
    91354011
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0913540111
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2319View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback