Reference: | [1] Barnett, V. and Lewis, T. (1994), Outliers in Statistical Data, 3rd ed. New York: John Wiley and Sons. [2] Bedrick, E. J., Lapidus, J., and Powell, J. F. (2000), Estimating the Mahalanobis Distance from Mixed Continuous and Discrete Data, Biometrics, 56, 394–401. [3] Bhattacharyya, A. (1943), On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society, 35, 99–109. [4] Donoho, D. L., and Huber,P. J. (1983), The Notion of Breakdown Point. In A Festschrift for Erich L. Lehmann, Ed. P. J. Bickel, K. A. Docksum and J. L. Hodges, Jr., 157–84, Belmont CA: Wadsworth. [5] Hampel, F., Ronchetti, P., Rousseeuw, P., and Stahel, W. (1986), Robust Statistics: The Approach Based on Influence Functions, New York: John Wiley and Sons. [6] Huber, Peter. J. (1964), Robust estimation of a location parameter, The Annals of Mathematical Statistics, 35, 73–101. [7] Huber, Peter. J. (1981), Robust Statistics, New York: John Wiley and Sons. [8] Jobsin, J. D. (1992), Applied Multivariate Data Analysis: Volume II: Categorical and Multivariate Methods, New York: Springer-Verlag. [9] Krzanowski, W. J. (1975), Discrimination and classfication using both binary and continuous variables, Journal of the American Statistical Association, 70, 782–790. [10] Krzanowski, W. J. (1983), Distance between population using mixed continuous and categorical variables, Biometrika, 70, 235–243. [11] Lehmann, E. L. and Casella, G. (1998), Theory of Point Estimation, New York: Springer. [12] Krzanowski, W. J. and Marriott, F. H. C. (1995), Kendall’s Library of Statistics 2, Maltivariate Analysis Part 2, London: Arnold. [13] Mahalanobis, P. C. (1936), On the generalized distance in statistics, Proceedings of the National Institute of Science India, 2, 49–55. [14] Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979), Multivariate Analysis, London: Academic Press. [15] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006), Robust Statistics, Theory and Methods, New York: Wiley. [16] Matusita, K. (1972), Discrimination and the affinity of distributions, Sidcriminant Analysis and Applications, Ed. T. Cacoullos, pp.213-223, New York: Academic Press. [17] Olkin,I. and Tate, R. F. (1961), Multivariate correlation models with mixed discrete and continuous variables, Annals of Mathematical Statistics, 32, 448– 465. [18] Poon, W. Y. and Lee, S. Y. (1986), Maximum likelihood estimation of polyserial correlations, Psychometrika, 51, 113–121. [19] Poon, W. Y. and Lee, S. Y. (1987),Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients, Psychometrika, 52, 409– 430. [20] Prohorov, Y. V. (1956), Convergence of random processes and limit theorems in probability theory, Theory of Probability and its Applications, 1, 157–214. [21] Rousseeuw, P. J. (1984), Least median of squares regression, Journal of the American Statistical Association, 79, 871–880. [22] Rousseeuw, P. J. and A. M. Leroy (1987), Robust Regression and Outlier Detection, New York: John Wiley. [23] Rousseeuw, P. J. and Van Driessen, K. (1999), A fast algorithm for the minimum covariance determinant estimator. Technometrics, 41, 212V223. [24] Zaman, A., Rousseeuw, P. J., and Orhan, M. (2001), Econometric applications of high-breakdown robust regression techiniques, Econometrics Letters, 71, 1–8. |