English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50939895      Online Users : 925
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/30887
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30887


    Title: 應用資料採礦技術於資料庫加值中的插補方法比較
    Imputation of value-added database in data mining
    Authors: 黃雅芳
    Contributors: 鄭宇庭
    謝邦昌



    黃雅芳
    Keywords: 資料採礦
    資料庫加值
    稀少資料
    遺漏值
    插補
    data mining
    value-added database
    rare data
    missing data
    imputation
    Date: 2003
    Issue Date: 2009-09-14
    Abstract: 資料在企業資訊來源中扮演了極為重要的角色,特別是在現今知識與技術的世代裡。如果對於一個有意義且具有代表性資料庫中的遺漏值能夠正確的處理,那麼對於企業資訊而言,是一個大有可為的突破。
    然而,有時我們或許會遇到一些不是那麼完善的資料庫,當資料庫中的資料有遺漏值時,從這樣資料庫中所獲得的結果,或許會是一些有偏差或容易令人誤解的結果。因此,本研究的目的在於插補遺漏值為資料庫加值,進而根據遺漏值類型建立插補模型。
    如果遺漏值為連續型,用迴歸模型和倒傳遞類神經模型來進行插補;如果遺漏值為類別型,採用邏輯斯迴歸、倒傳遞類神經和決策樹進行插補分析。經由模擬的結果顯示,對於連續型的遺漏值,迴歸模型提供了最佳的插補估計;而類別型的遺漏值,C5.0決策樹是最佳的選擇。此外,對於資料庫中的稀少資料,當連續型的遺漏值,倒傳遞類神經模型提供了最佳的插補估計;而類別型的遺漏值,亦是C5.0決策樹是最佳的選擇。
    Data plays a vital role as source of information to the organization especially in the era of information and technology. A meaningful, qualitative and representative database if properly handled could mean a promising breakthrough to the organizations.
    However, from time to time, we may encounter a not so perfect database, that is we have the situation where the data in the database is missing. With the incomplete database, the results obtained from such database may provide biased or misleading solutions. Therefore, the purpose of this research is to place its emphasis on imputing missing data of the value-added database then builds the model in accordance to the type of data.
    If the missing data type is continuous, regression model and BPNN neural network is applied. If the missing data type is categorical, logistic regression, BPNN neural network and decision tree is chosen for the application. Our result has shown that for the continuous missing data, the regression model proved to deliver the best estimate. For the categorical missing data, C5.0 decision tree model is the chosen one. Besides, as regards the rare data missing in the database, our result has shown that for the continuous missing data, the BPNN neural network proved to deliver the best estimate.
    For the categorical missing data, C5.0 decision tree model is the chosen one.
    Reference: 1. Alan Agresti(1996)An Introduction to Categorical Data Analysis. Wiley interscience.
    2. Alvin C. Rencher(2002)Methods of Multivariate Analysis, 2nd ed. Wiley interscience.
    3. Donald B. Rubin Multiple imputation for nonresponse in surveys. Wiley series in Probability and Statistics.
    4. Joop J. Hox (1999) A review of current software for handing missing data. Kwantitatieve Methoden, 62, 123-138
    5. Judi Scheffer (2002) Dealing with missing data. Res. Lett. Inf. Math. Sci. pp153-160
    6. M. P. Craven (1997) A faster learning neural network classifier using selective backpropagation. Proceedings of the fourth IEEE international Conference on electronics, circuits and systems, Cairo, Egypt, Volume 1, pp 254-258
    7. Margaret H. Dunham(2002)Data Mining---Introductory and Advanced Topics. Prentice Hall.
    8. Robert E. Fay (1996) Alternative paradigms for the analysis of imputed survey data. Journal of the American statistical association, Vol. 91, No. 434, 490-498
    9. Steven Roman(2002)Access Database Design & Programming. O"Reilly
    10. Hyunyoon Yun, Danshim Ha, Buhyun Hwang and Keun Ho Ryu (2003) Mining association rules on significant rare data using relative support. The journal of systems and software 67. pp181-191
    11. John O. Rawlings, Sastry G. Pantula and David A. Dickey(1998) Applied Regression Analysis---A Research Tool, 2nd ed. Springer.
    12. Roderick J.A. Little and Donald B. Rubin(2002) Statistical Analysis with Missing Data, 2nd ed. Wiley interscience.
    13. William G. Madow, Ingram Olkin and Donald B. Rubin (1983) Incomplete data in sample surveys:Theory and Bibliographies. Academic Press.
    Description: 碩士
    國立政治大學
    統計研究所
    91354018
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091354018
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2263View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback