English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52205862      Online Users : 881
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/30880
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30880


    Title: DNA微陣列基因多重檢定比較之問題
    Authors: 林雅惠
    Ya-hui Lin
    Contributors: 薛慧敏 老師
    Hui-min Hsueh
    林雅惠
    Ya-hui Lin
    Keywords: 個別型一誤差率
    整體誤差率
    多重比較方法
    錯誤發現率
    CWE
    FWE
    MCP
    FDR
    Date: 2001
    Issue Date: 2009-09-14
    Abstract: 在DNA微陣列基因的實驗中資料包括數千個cDNA 序列,為了要篩選出有差異表現基因,同時針對大量基因個數作假設檢定。若無適當地調整個別檢定問題中的誤差率,則將會膨脹整體的誤差率。在多重假設檢定中為了讓整體誤差率(familywise error rate, FWE)控制在設定水準下,必須調整個別假設檢定之個別型一誤差率CWE的檢定準則,此為多重比較方法(multiple comparison procedures:MCP)。然而當多重比較的個數增加時,控制整體誤差率FWE之傳統的多重比較方法會是過於嚴格的標準,不容易推翻虛無假設,使得檢定的結果太過保守。為了解決此現象,Benjamini and Hochberg(1995) 建議另一種錯誤率:錯誤發現率(false discovery rate:FDR)。錯誤發現率定義為在被拒絕之虛無假設中錯誤拒絕的比例之期望值。而Benjamini and Hochberg(1995)也在文中提出一個得以控制錯誤發現率的多重比較方法,稱為BH方法。本篇論文將詳盡地介紹CWE、FWE和FDR三種誤差率,並提出-修正BH的方法,稱為BH( )。我們將透過電腦模擬驗證出新的修正BH方法之表現比原BH方法有較高的檢定力,且從實例的結果中發現BH( )比原BH方法能檢測出更多的顯著個數。






    關鍵字:個別型一誤差率(CWE);整體誤差率(FWE);多重比較方法(MCP);
    錯誤發現率(FDR)。
    cDNA microarray technology provides tools to study thousands of genes simultaneously. Since a large number of genes are compared, using a conventional significant test leads to the increase of the type I error rate. To avoid the inflation, the adjustment for multiplicity should be considered and a multiple comparison procedure (MCP) that controls the familywise error rate (FWE) is recommended. However, the conservativeness of a MCP that controls FWE becomes more and more severe as the number of comparisons (genes) increases. Instead of FWE, Benjamini and Hochberg (1995) recommended to control the expected proportion of falsely rejecting hypotheses—the false discovery rate (FDR)—and developed a MCP, which has its FDR under control. In this paper, the error rates CWE, FWE and FDR are fully introduced. A new MCP with FDR controlled is developed and its performance is investigated through intensive simulations.











    KEY WORDS:Comparison-wise error rate (CWE);Familywise error rate (FWE);Multiple comparison procedure (MCP);False discovery rate (FDR).
    Reference: 1. Benjamini, Y. and Hochberg, Y. (1995) “Controlling the false discovery rate: A practical and powerful approach to multiple testing”. J. R. Statistical Soc. Ser. B, 57, 289-300.
    2. Benjamini, Y. and Liu, W. (1999) “A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence”. Journal of Statistical Planning and Inference, 82(1-2), 163-170.
    3. Benjamini, Y., Yekutieli, D., Reiner, A., Yakubov, R. and Gutman, R. “False Discovery Rate –FDR”. http://www.math.tau.ac.il/~roee/index.htm, Sep 11th, 2002.
    4. Hochberg, Y. (1988) “A sharper Bonferroni procedure for multiple tests of significance”. Biometrika, 75, 800-803.
    5. Kerr, M. K., Afshari, C. A., Bennett, L., Bushel, P., Martinez, J., Walker, N. J. and Churchill, G. A. (2001) “Statistical Analysis of a Gene Expression Microarray Experiment with Replication”. Statistica Sinica, 12, 203-218.
    6. Kerr, M. K., Martin, M. and Churchill, G. A.(2000)“Analysis of variance for gene expression microarray data”. Journal of Computational Biology, 7, 819-837.
    7. Miller, R. G..(1981) “Simultaneous Statistical Infrence”. 2nd ed. New York: Springer-Verlag, 67-70.
    8. Nadon, R. and Shoemaker, J. (2002) “Statistical issues with microarrays: processing and analysis”. Trends in Genetics, 18, 265-271.
    9. Simes, R. J. (1986) “An improved Bonferroni procedure for multiple tests of significance”. Biometrika, 73, 751-754.
    10. Yang, Y. H., Dudoit, S., Luu, P. and Speed, T. P. (2001) “Normalization for cDNA microarray data”. In M. L. Bittner, Y. Chen, A. N. Dorsel, and E. R. Dougherty (eds), Microarrays: Optical Technologies and Informatics, Proceedings of SPIE, 4266, 141-152.
    Description: 碩士
    國立政治大學
    統計研究所
    90354021
    90
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0090354021
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2572View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback