政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/30874
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113648/144635 (79%)
造訪人次 : 51595467      線上人數 : 884
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/30874
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/30874


    題名: 應用資料採礦技術於保險公司附加保單之增售
    作者: 李家旭
    貢獻者: 鄭宇庭
    李家旭
    關鍵詞: 資料採礦
    分類迴歸樹
    類神經網路
    附加保單
    C5.0
    日期: 2002
    上傳時間: 2009-09-14
    摘要: 摘 要

    本研究主是利用資料採礦技術,應用於人身保險公司,試圖尋找出購買附加保單的保戶之模式,以提高保戶購買附加保單之比例。資料來源為我國某人身保險業所提供之客戶資料,原始資料共計1,500,943筆,經過資料清理後分析資料為92,581筆,隨後進行基本敘述統計分析,與決策樹、類神經網路、關聯規則等資料採礦技術,其分析結果如下:

    一、主保單的險種類型分為三種:死亡險、生死合險、健康險;不同的保單類型的保戶,有著不同的附加保單購買習慣。主保單為死亡險的保戶,主要因為保險需求而購買該主保單;保單為生死合險的保戶,主要因為儲蓄需求而購買保單;保單為健康險的保戶,是比較特別的族群,因為以往健康險是以附加保單形式出售,但保險公司因應潮流將健康險調整成也可以主保單形式出售,使得健康險中不會購買附加保單。

    二、新保戶購買主保單為死亡險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。新保戶購買主保單為生死合險的客戶時,依照分類迴歸樹模型,預測此客戶是否有意願購買附加保單。

    三、保險公司可依照關聯規則結果產生出的8條關聯規則,針對舊有客戶進行保險商品再推銷策略。
    Abstract

    The main purpose of this research is to apply data mining techniques, namely decision tree, neural network, and association on insurance company’s database in modeling the behaviors of customers who bought the policies. Data source is provided by the insurance company in Taiwan.
    1、There are 3 type of main insurance policies:death insurance、endowment insurance、health insurance. Insurance buyers behave differently based upon the type of insurance they have. Death insurance buyers are in for the sole purpose of being insured. Endowment insurance buyers are in for the purpose of savings. Health insurance buyers usually buy the policies as the add-on products, However as consumers in a recent trend have become more health conscious, the health insurance that used to be as consumers in a recent trend have become more health conscious, the health insurance that used to be bought as the add-on products have become the main drive and being sold as main policy for the insurance company.
    2、With the above information at hand, we use CART model to predict whether the death and endowment insurance buyers will have any potential in getting the add-on policies thereby opening the window of opportunities for the insurance issuers to come up and be able to promote the new line of products to their existing customers based on the research findings.
    3、The insurance company can re-promote their insurance merchandises to old customers according to the 8 rules constructed by the association rules.
    參考文獻: 參考文獻
    中文部分
    StatSoft公司,http://www.statsoft.com.tw/index.htm
    SPSS公司,http://www.sinter.com.tw/SPSS/index.html
    中華民國人壽保險商業同業公會,http://www.lia-roc.org.tw/
    財政部保險司,http://www.insurance.gov.tw/
    麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦-顧客關係管理暨電子行銷之應用(Data Mining Techniques:for marketing, sales, and customer support)(彭文正譯)。台北:維科圖書有限公司。
    麥可.裴瑞(Michael J. A. Berry)、戈登.林諾夫(Gordon S. Linoff)著(民90)。資料採礦的理論與實務-顧客關係管理的技巧與科學(Mastering Data Mining:The Art & Science of Customer Relationship Management)(吳旭志、賴淑貞譯)。台北:維科圖書有限公司。
    張維哲(民81),人工神經網路,全欣資訊圖書。
    葉怡成(民82),類神經網路模式應用與實作,儒林圖書。
    賴信良(民91),資料挖掘在教育上的應用-以國小學童「體適能測驗」為例,國立台北師範學院數理教育研究所碩士論文。
    劉宜妝(民91),資料採礦之應用研究—台灣地區漁市場行情資料庫之關聯法則分析,國立中興大學行銷學系碩士論文。
    劉家銘(民90),利用負相關線上挖掘關聯式規則,國立中興大學資訊科學研究所碩士論文。
    鄭忠樑(民91),運用分類樹於股價報酬率預測之研究,元智大學資訊管理研究所碩士論文。
    英文部分
    Agrawal, R., Imielinski, T., & Swami, A.N. (1993), Mining Associations between Sets of Items in Massive Databases. Proceedings of the ACM International Conference on Management of Data., 207-216.
    Breiman, L. Friedman, J.H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. California:Wadsworth, Pacific Grove.
    Dunham, M. H. (2003), Data Mining:Introductory and Advanced Topics. New Jersey:Pearson Education Inc.
    Fayyad, U.M., Piatetsky-Shapiro, G.., Smyth P., & Uthurusamy, R. (1996), From Data Mining to Knowledge Discovery:An Overview. AAAI/MIT Press.
    Freund, Y., & Schapire, R.E. (1996), “Experiments with a New Boosting Algorithm”. Machine Learning:Proceedings of the Thirteenth International Conference.
    Smith, M. (1993), Neural Networks for Statistical Modeling. New York:Van Norstrand Reinhold.
    Terano, T., Liu, H., & Chen, A.L.P. (2000), Knowledge Discovery and Data Mining: Current Issues and New Applications. Germany:Springer.
    Witten, I. H. & Frank, E. (2000), Data Mining:Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco:Morgan Kaufmann Publishers.
    Zhang, C., Zhang, S., Zhang, S.,& Heymer, B.E. (2002), Association rule mining:models and algorithms. New York:Springer.
    描述: 碩士
    國立政治大學
    統計研究所
    90354007
    91
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0090354007
    資料類型: thesis
    顯示於類別:[統計學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2212檢視/開啟
    index.html0KbHTML2216檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋