Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/30872
|
Title: | 資料採礦技術在保險公司客戶保單貸款行為研究的應用 |
Authors: | 邱蔚群 Lilian Chiu |
Contributors: | 鄭宇庭 邱蔚群 Lilian Chiu |
Keywords: | 資料採礦 決策樹 保單貸款 類神經 C4.5 |
Date: | 2002 |
Issue Date: | 2009-09-14 |
Abstract: | 摘 要
過去對於保險資料的研究多採用傳統統計方法,然而保險公司龐大資料庫中蘊含的寶貴資訊可能因此被遺漏。
本研究目的是將資料採礦的技術應用到保險公司資料庫中的高雄縣市保戶保單貸款資料上,研究保戶利用保單貸款的行為,做為保險公司日後推行保單貸款的參考。
從整理過後的資料中,用不同抽樣方法抽出不同樣本大小以及不同是否貸款比例的樣本,將連續變數做轉換後,建立決策樹和類神經模型,透過統計上的變異數分析,討論四個因子對預測結果好壞的影響。選出最好組合的樣本大小、是否貸款比例(已貸款:尚未貸款)、抽樣方法、以及建立的模型。
最後將此最佳組合建立的C4.5決策樹轉換成規則,並探討其中正確率較高的幾項,作為給保險公司的參考。 Abstract
In the past, the analysis of insurance data is usually conducted with traditional statistical methods, however a large amount of valuable information hidden might be left undiscovered.
The purpose of this research is to apply data mining techniques to customer policy data taken from one of insurance company’s database in Kaoshuing city and county to study the behavior of customers taking loans against their policies as a reference for insurance company in promoting policy in the future.
From the cleansed data, we sample policies of different sizes and percentage of policies with loans by different sampling methods, decision trees and neural network models, then through the significant interactions of ANOVA, discuss how the results being influenced by the four factors. We then choose the best model that manifests factors affecting customer’s behavior in taking out the loan thus providing insurance company a vital information in targeting its customers group. |
Reference: | 參考文獻 l Berry, M. J. A., and Linoff, G. S. (1997), Data Mining Techniques: for Marketing, Sales, and Customer Support. John Wiley & Sons Inc, New York. l Berry, M. J. A., and Linoff, G. S. (2000), Mastering Data Mining Techniques, The Art & Science of Customer Relationship Management. John Wiley & Sons Inc., New York. l Breiman, L. Friedman, J.H., Olshen, R. A., and Stone, C. J. (1984).. Classification and Regression Trees. Wadsworth, Pacific Grove, California. l Dunham, M. H. (2003), Data Mining: Introductory and Advanced Topics. Pearson Education Inc., Upper Saddle River, New Jersey. l Freund, Y., and Schapire, R. E. (1996), “Experiments with a New Boosting Algorithm”. Machine Learning: Proceedings of the Thirteenth International Conference. l Friedman, J., Hastie, T., and Tibshirani R. (1998), Additive Logistic Regression: a Statistical View of Boosting, l Smith, M. (1993), Neural Networks for Statistical Modeling. Van Norstrand Reinhold, New York. l Terano, T., Liu, H., and Chen, A. L. P. (2000), Knowledge Discovery and Data Mining: Current Issues and New Applications. Springer-Verlag, Berling, Germany. l Witten, I. H., and Eibe, F. (2000), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, San Francisco, California. l 中國科學技術大學生物醫學工程跨係委員會,神經網路及其應用,儒林圖書,1993。 l 呂奇傑,演化式類神經網路分類技術於資料探勘上之應用,輔大應統所碩士論文,2000。 l 張維哲,人工神經網路,全欣資訊圖書,1992。 l 陳智宏,應用類神經網路於電力系統負載之溫度敏感度分析,中山電機工程所碩士論文,2001。 l 黃國源,類神經網路與圖形辨識,維科,2000。 l 葉怡成,類神經網路模式應用與實作(第7版),儒林圖書公司,台北市,2000。 l 傅心家,神經網路導論,第三波,1991。 l 楊雅媛,迴歸分析與類神經網路預測能力之比較,政大統計所碩士論文,2002。 l 鄭忠樑,運用分類樹於股價報酬率預測之研究,元智大學資訊管理研究所碩士論文,民國九十一年。 |
Description: | 碩士 國立政治大學 統計研究所 90354004 91 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0090354004 |
Data Type: | thesis |
Appears in Collections: | [統計學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 324 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|