政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/30024
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51087939      Online Users : 899
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/30024


    Title: 運用長期記憶模型於估計股票指數期貨之風險值
    Estimating Value-at-Risk for stock index futures using Double Long-memory Models
    Authors: 唐大倫
    Tang,Ta-lun Tang
    Contributors: 謝淑貞
    唐大倫
    Tang,Ta-lun Tang
    Keywords: 長期記憶性
    不對稱
    風險值
    ARFIMA
    FIGARCH
    Long memory
    Asymmetry
    Value-at-Risk
    Date: 2003
    Issue Date: 2009-09-11 17:05:05 (UTC+8)
    Abstract: 在本篇文章中,我們採用長期記憶模型來估計S&P500、Nasdaq100和Dow Jones Industrial Index三個股票指數期貨的日收盤價的風險值。為了更準確地計算風險值,本文採用常態分配、t分配以及偏斜t分配來做模型估計以及風險值之計算。有鑒於大多數探討風險值的文獻只考慮買入部位的風險,本研究除了估計買入部位的風險值,也估計放空部位的風險值,以期更能全面性地估算風險。實證結果顯示,ARFIMA-FIGARCH模型配合偏斜t分配較其他兩種分配更能精確地估算樣本內的風險值。基於ARFIMA-FIGARCH模型配合偏斜t分配在樣本內風險值計算的優異表現,我們利用此模型搭配來實際求算樣本外風險值。結果如同樣本內風險值一般,ARFIMA-FIGARCH模型配合偏斜t分配在樣本外也有相當好的風險預測能力。
    In this thesis, we estimate Value-at-Risk (VaR) for daily closing price of three stock index futures contracts, S&P500, Nasdaq100, and Dow Jones, using the double long memory models. Due to the existence of a long-term persistence characterized in our data, the ARFIMA-FIGARCH models are used to compute the VaR. In order to investigate better, three kinds of density distributions, normal, Student-t, and skewed Student-t distributions, are used for estimating models and computing the VaR. In addition to the VaR for the long trading positions which most researches focus on to date, the VaR for the short trading positions are calculated as well in this study. From the empirical results we show that for the three stock index futures, the ARFIMA-FIGARCH models with skewed Student-t distribution perform better in computing in-sample VaR both in long and short trading positions than symmetric models and has a quite excellent performance in forecasting out-of-sample VaR as well.
    Reference: Alexander, C. O. and Leigh, C. T., 1997, On the covariance metrices used in value-at-risk model, The Journal of Derivatives, 50-62.
    Baillie, R. T., Bollerslev, T., and Mikkelsen, H., 1996, Fractionally integrated generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 74, 3-30.
    Baillie, R. T., Chung, C. -F., and Tieslau, M. A., 1996, Analyzing inflation by the fractionally integrated ARFIMA-GARCH model, Journal of Applied Econometrics 11, 23-40.
    Barkoulas, J. T. and Baum, C. F., Long term dependence in stock returns, Working Paper, Department of Economics, Boston College, USA.
    Beine, M. and Laurent, S., 2003, Central bank interventions and jumps in double long memory models of daily exchange rate, Working Paper.
    Bollerslev, T., 1986, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31, 307-327.
    Bollerslev, T. and Mikkelen, H. O., 1996, Modeling and pricing long memory in stock market volatility, Journal of Econometrics 73, 151-184.
    Brunetti, C. and Gilbert, C. L., 2000, Bivariate FIGARCH and fractional cointegration, Journal of Empirical Finance 7, 509-530.
    Chou, C. H., 2000, The performance of VaR measurements- the empirical studies of currency exchange rates, Graduate Institute of Financa, Fu Jen Catholic University.
    Christoffersen, P. F. and Diebold, F. X., 2000, How relevant is volatility forecasting for financial risk management? Review of Economics and Statistics 82, 1-11.
    Ding, Z., Granger, C. W. J., and Engle, R. F., 1993, A long memory property of stock market returns and a new model, Journal of Empirical Finance 1, 83-106.
    Dueker, M. and Asea, P. K., 1995, Non-monotonic long memory dynamics in black-market exchange rates, Working Paper, Federal Reserve Bank of ST. Louis.
    Engle, R. F., 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of united kingdom inflation, Econometrica 50, 987-1007.
    Giot, P. and Laurent, S., 2003, Value-at-risk for long and short trading positions, Journal of Applied Econometrics 18, 641-664.
    Goorbergh, R. V. D. and Vlaar, P., 1999, Value-at-risk analysis of stock returns historical simulation, variance techniques or tail index estimation, http://www.gloriamundi.org.
    Granger, C. W. J. and Ding, Z. 1996, Varieties of long memory models, Journal of Econometrics 73, 61-77.
    Henry, O. T., 2000, Long memory in stock returns: some international evidence, Working Paper, Department of Economics, The University of Melbourne, Australia.
    Jorion, P., 2000, Value-at-risk: The New Benchmark for Managina Financial Risk, McGraw-Hill.
    Kupiec, P., 1995, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives 2, 174-184.
    Lambert, P. and Laurent, S., 2000, Modeling skewness dynamics in series of financial data, Discussion Paper, Institute de Statistique, Louvain-la-Neuve.
    Lo, A. W., 1991, Long-term memory in stock market price, Econometrica 59, 1279-1313.
    Liu, S. and Brorsen, B., 1995, Maximun likelihood estimation of a GARCH-stable model, Journal of Applied Econometrics 2, 273-185.
    Shieh, S. –J., 2004, Modeling daily value-at-risk using FIAPARCH model with (skewed) Student-t density, Working Paper, Department of International Trade, National Cheng-chi University, Taiwan.
    Shieh, S. –J., 2003, Mean reversion in stock index futures markets, Working Paper, Department of International Trade, National Cheng-chi University, Taiwan.
    Sriananthakumar, S. and Silvapulle, S., 2003, Estimating value at risks for short and long trading positions, Working Paper, Department of Economics and Business Statistics, Monash University, Australia.
    Tse, Y. K., Anh, V. V., and Tieng, Q., Maximun likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets, Working Paper.
    Wung, S. B., 1999, The market risk measurement of the warrants of the issuer, The Department of Economics, Soochow University, Taiwan.
    Description: 碩士
    國立政治大學
    國際經營與貿易研究所
    91351022
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091351022
    Data Type: thesis
    Appears in Collections:[Department of International Business] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2400View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback