Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/29697
|
Title: | 以令牌桶機制為基礎的IEEE 802.16允許控管以及上行封包排程 |
Authors: | 江啟宏 Chiang,Chi-Hung |
Contributors: | 蔡子傑 Tsai,Tzu-Chieh 江啟宏 Chiang,Chi-Hung |
Keywords: | 令牌桶 排程 token bucket scheduling QoS 802.16 |
Date: | 2005 |
Issue Date: | 2009-09-11 16:04:43 (UTC+8) |
Abstract: | IEEE 802.16標準是針對無線城域網路(Wireless Metropolitan Area Network)而設計的,它支援服務品質(QoS),而且具有相當高的傳輸速率。每一種應用服務都有不同的型態,根據這些不同的型態,802.16 定義了四個不同的服務品質類別。然而,最關鍵的部份-封包排程卻沒有被定義在802.16標準裡面。在這篇論文中,我們提出了一套完整的允入控管(call admission control)和上行封包排程的架構。首先,我們先以令牌桶(token bucket)機制為基礎,設計了一套802.16專用的允入控管和上行封包排程的模組。接著我們介紹如何將令牌桶機制套用至一般的連線。我們找出了一個預測連線的延遲(delay)和漏失率(loss rate)的模型,接著可以利用這個模型,並透過簡單的搜尋演算法來找出適合的令牌速率和令牌桶的大小。模擬的結果表示,我們的允入控管和上行封包排程能夠確實對具有即時性質的連線的提供保證,且我們將令牌桶機制套用到一般連線的模組也能準確的運作。最後,我們也提出了一個簡單的整合實例並評估其效能。 The IEEE 802.16 standard was designed for Wireless Metropolitan Area Network (WMAN). It supports QoS and has very high transmission rate. According to different application types, there are four QoS classes defined in the IEEE 802.16 standard. The key part of 802.16 for QoSâ packet scheduling, was undefined. In this thesis, a complete call admission control (CAC) and uplink packet scheduling is presented. We first proposed a token-bucket based uplink packet scheduling combined with CAC. Then a model of characterizing traffic flows by token bucket parameters, namely token rate and bucket size, is presented. We proposed a queuing model to predict the delay and loss rate for a token bucket controlled traffic flow. In order to fulfill token bucket based CAC, we need to find appropriate token rate and bucket size for any flows. A simple search algorithm coupled with our queuing model can be used to achieve this. Multiplexing of two traffic flows is also introduced. The simulation results show that our CAC and uplink packet scheduling can promise the delay requirement of real-time flows and prevent each class from starvation. The precision of our token rate estimation model is also validated. Finally, a simple integration of our CAC, uplink scheduling, and multiplexing is evaluated. |
Reference: | [1] IEEE, âIEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systemsâ, IEEE standard, December 2001 [2] IEEE, âIEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systemsâ, IEEE standard, October 2004 [3] Carl Eklund, Roger B. Marks, Kenneth L. Stanwood and Stanley Wang, âIEEE standard 802.16: A technical overview of the wirelessMAN air interface for broadband wireless accessâ, IEEE Communications Magazine, vol. 40, no. 6, June 2002, pp. 98 â 107. [4] Kitti Wongthavarawat, and Aura Ganz, âPacket scheduling for QoS support in IEEE 802.16 broadband wireless access systemsâ, International Journal of Communication Systems, vol. 16, issue 1, February 2003, pp. 81-96 [5] Dong-Hoon Cho, Jung-Hoon Song, Min-Su Kim, and Ki-Jun Han, âPerformance Analysis of the IEEE 802.16 Wireless Metropolitan Area Networkâ, IEEE Computer Society, DFMAâ05, February 2005, pp. 130-137. [6] Puqi Perry Tang and Tsung-Yuan Charles Tai, âNetwork traffic characterization using token bucket modelâ, IEEE INFOCOM 1999 - The Conference on Computer Communications, no. 1, March 1999, pp. 51 â 62. [7] Tarkan Taralp, Michael Devetsikiotis, and Ioannis Lambadaris, âTraffic Characterization for QoS Provisioning in High-Speed Networksâ, IEEE Computer Society, Thirty-First Annual Hawaii International Conference on System Sciences-Volume 7, January 1998, pp. 485. [8] Kleinrock L., âQueueing Systems. Volume I: Theoryâ, John Wiley, New York, 1975. [9] Xiaojun XIAO, Winston K.G. SEAH, Chi Chung KO, and Yong Huat CHEW, âUpstream Resource Reservation and Scheduling Strategies for Hybrid Fiber/Coaxial Networksâ, APCC/OECC`99, vol. 2, October 1999, pp. 1163-1169 [10] Mohammed Hawa, and David W. Petr, âQuality of Service Scheduling in Cable and Broadband Wireless Access Systemsâ, Quality of Service, 2002. Tenth IEEE International Workshop, May 2002, pp. 247-255 [11] Reuven Cohen and Liran Katzir, âA generic quantitative approach to the scheduling of synchronous packets in a shared medium wireless access networkâ, IEEE INFOCOM 2004 - The Conference on Computer Communications, vol. 23, no. 1, March 2004, pp. 1674 â 1684 [12] Guosong Chu, Deng Wang, and Shunliang Mei, âA QoS Architecture for the MAC Protocol of IEEE 802.16 BWA System â, IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, June 2002, pp. 435â439 |
Description: | 碩士 國立政治大學 資訊科學學系 92753003 94 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0927530031 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
index.html | 0Kb | HTML2 | 507 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|