政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/23903
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52055272      Online Users : 346
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/23903


    Title: Mining Frequent Itemsets from Data Streams with a Time-Sensitive Sliding Window
    Authors: C.H. Lin;D.Y. Chiu;Y.H. Wu;陳良弼
    Date: 2005
    Issue Date: 2009-01-09 16:52:11 (UTC+8)
    Abstract: Mining frequent itemsets has been widely studied over the last decade. Past research focuses on mining frequent itemsets from static databases. In many of the new applications, data flow through the Internet or sensor networks. It is challenging to extend the mining techniques to such a dynamic environment. The main challenges include a quick response to the continuous request, a compact summary of the data stream, and a mechanism that adapts to the limited resources. In this paper, we develop a novel approach for mining frequent itemsets from data streams based on a time-sensitive sliding window model. Our approach consists of a storage structure that captures all possible frequent itemsets and a table providing approximate counts of the expired data items, whose size can be adjusted by the available storage space. Experiment results show that in our approach both the execution time and the storage space remain small under various parameter settings. In addition, our approach guarantees no false alarm or no false dismissal to the results yielded.
    Relation: Proc. SIAM International Conference on Data Mining
    Data Type: conference
    DOI link: http://dx.doi.org/10.1137/1.9781611972757.7
    DOI: 10.1137/1.9781611972757.7
    Appears in Collections:[Department of Computer Science ] Proceedings

    Files in This Item:

    File SizeFormat
    itemset.pdf366KbAdobe PDF22701View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback