政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/18708
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51064680      Online Users : 970
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/18708


    Title: The Use of Kernel Set and Sample Memberships in the Identification of Nonlinear Time Series
    Authors: 吳柏林
    Hsu Yu-Yun
    Keywords: Fuzzy sets;Kernel sets;Clustering;Identification;Nonlinear time series
    Date: 2004-01
    Issue Date: 2008-12-24 13:30:29 (UTC+8)
    Abstract: The problem of system modeling and identification has attracted considerable attention in the nonlinear time series analysis mostly because of a large number of applications in diverse fields like financial management, biomedical system, transportation, ecology, electric power systems, hydrology, and aeronautics. Many papers have been presented on the study of time series clustering and identification. Nonetheless, we would like to point out that in dealing with clustering time series, we should also take the vague case as they belong to two or more classes simultaneously into account. Because many patterns of grouping in time series really are ambiguous, those phenomena should not be assigned to certain specific classes inflexibly. In this paper, we propose a procedure that can effectively cluster nonlinear time series into several patterns based on kernel set. This algorithm also combines with the concept of a fuzzy set. The membership degree of each datum corresponding to the cluster centers is calculated and is used for performance index grouping. We also suggest a principle for extending the fuzzy set by kernel set and further interpret events in a sensible light through these sets. Finally, the procedure is demonstrated by set off RRI data and its performance is shown to compare favorably with other procedures published in the literature.
    Relation: Soft Computing Journal, 8(3), 207-216
    Data Type: article
    DOI link: http://dx.doi.org/10.1007/s00500-003-0265-3
    DOI: 10.1007/s00500-003-0265-3
    Appears in Collections:[Department of Mathematical Sciences] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    207-216.pdf287KbAdobe PDF2562View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback