English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118204/149236 (79%)
Visitors : 74196462      Online Users : 428
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159299


    Title: 融合新聞情緒分析與結構化狀態空間模型的多重輸入股價預測
    Multi-Input Stock Price Forecasting Integrating News Sentiment Analysis and Structured State Space Models
    Authors: 陳竑宇
    Chen, Hong-Yu
    Contributors: 張宏慶
    Jang, Hung-Chin
    陳竑宇
    Chen, Hong-Yu
    Keywords: 股價預測
    Mamba
    新聞情緒分析
    結構化狀態空間模型
    多模態輸入
    Stock Price Forecasting
    Mamba
    News Sentiment Analysis
    Structured State Space Model
    Multi-modal Input
    Date: 2025
    Issue Date: 2025-09-01 16:20:03 (UTC+8)
    Abstract: 隨著金融科技與人工智慧的快速發展,運用機器學習模型進行股價預測成為熱門研究領域。然而,傳統深度學習架構如 LSTM 或 Transformer 在處理長時間序列與整合非結構化新聞資料時,仍存在一定侷限。為提升預測準確性與模型表現,本研究引入選擇性遞迴機制與高推理效率的結構化狀態空間模型 Mamba,並設計融合中文新聞情緒分析與多重股價特徵的預測架構:Mamba-Stock 模型。
    本研究以臺灣證券交易所上市之 1,020 檔股票為實驗對象,結合每日股價結構化特徵與新聞情緒特徵,對未來一天的股價進行預測。新聞資料來自《經濟日報》,經翻譯與情緒分析後轉化為每日聚合的情緒分數,並與股價資料對齊輸入模型。同時,本研究設計多組實驗,包含是否加入新聞、特徵選擇策略 (SelectKBest、Random Forest、無特徵挑選) 與不同超參數組合,進行共計 11,976 次訓練與預測實驗。
    實驗結果顯示,Mamba-Stock 模型具備高度穩定性與預測準確率,在加入新聞特徵的情境下,平均 R² 提升 0.158,並顯著降低 MAE 與 MAPE。中位 R² 高達 0.9999,驗證了新聞情緒對股價預測的有效貢獻。整體而言,本研究提出具備高度可擴展性與實務應用潛力的預測系統,並證明 Mamba 架構能有效處理結構化與非結構化的資料融合,為金融時間序列預測領域提供嶄新解方。
    With the rapid advancement of financial technology and artificial intelligence, stock price forecasting using machine learning models has become a prominent area of research. Traditional deep learning models, such as LSTM and Transformer, face challenges in handling long-term dependencies and integrating unstructured data like news texts. To enhance predictive accuracy and efficiency, this study introduces the Structured State Space Model (SSM) architecture—Mamba—featuring selective recurrence and high inference efficiency. We propose a novel multi-input forecasting framework named Mamba-Stock, integrating both structured market features and unstructured news sentiment.
    Using a dataset of 1,020 listed companies from the Taiwan Stock Exchange, the model incorporates daily structured stock features and aggregated sentiment features extracted from translated and analyzed financial news articles from Economic Daily News. A total of 11,976 forecasting experiments were conducted under different configurations, including the presence of news, feature selection methods (SelectKBest, Random Forest, or without feature selection) , and hyperparameter combinations.
    The results demonstrate that the Mamba-Stock model delivers stable and accurate predictions. In experiments that incorporated news features, the average R² improved by 0.158, with notable reductions in MAE and MAPE. The median R² reached 0.9999, confirming the significant contribution of news sentiment to predictive performance. This study presents a scalable and practical forecasting system, highlighting Mamba’s capability to effectively integrate structured and unstructured data, offering new insights into time series modeling for financial applications.
    Reference: [1] Bollen, J., Mao, H., & Zeng, X. (2011) . Twitter mood predicts the stock market. Journal of Computational Science, 2 (1) , 1–8. https://doi.org/10.1016/j.jocs.2010.12.007.
    [2] Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock Price Prediction Using the ARIMA Model. 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 106–112.IEEE. https://doi.org/10.1109/UKSim.2014.67.
    [3] Poon, S.-H., & Granger, C. W. J. (2003). Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, 41(2), 478–539. https://doi.org/10.1257/jel.41.2.478.
    [4] Dahal, K. R., Pokhrel, N. R., Gaire, S., Mahatara, S., Joshi, R. P., Gupta, A., Banjade, H. R., & Joshi, J. (2023) . A comparative study on effect of news sentiment on stock price prediction with deep learning architecture. PLOS ONE, 18 (4) , e0284695. https://doi.org/10.1371/journal.pone.0284695.
    [5] Tian, L., Li, F., Sun, Y., & Guo, Y. (2021) . Forecast of LSTM-XGBoost in stock price based on Bayesian optimization. Intelligent Automation & Soft Computing, 29 (3) , 855–868. https://doi.org/10.32604/iasc.2021.016805.
    [6] Fazlija, A., & Harder, S. (2022) . Using Financial News Sentiment for Stock Price Direction Prediction. Mathematics 10, 13 (2022) . https://doi.org/10.3390/math10132156.
    [7] Fischer, T., & Krauss, C. (2018) . Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270 (2) , 654–669. https://doi.org/10.1016/j.ejor.2017.11.054.
    [8] Grootendorst, M. (2024) . A visual guide to Mamba and state space models. Retrieved from https://www.maartengrootendorst.com/blog/mamba/.
    [9] Albert Gu, Tri Dao. (2023) . Mamba: Linear-Time sequence modeling with selective state spaces. arXiv Preprint, arXiv:2312.00752. https://arXiv.org/abs/2312.00752.
    [10] Albert Gu, Karan Goel, Christopher Ré (2022) . Efficiently modeling long sequences with structured state spaces. International Conference on Learning Representations (ICLR) . https://openreview.net/forum?id=uYLFoz1vlAC.
    [11] Saberironaghi, M., Ren, J., & Saberironaghi, A. (2025). Stock market prediction using machine learning and deep learning techniques: A review. AppliedMath, 5(3), 76. https://doi.org/10.3390/appliedmath5030076.
    [12] Kalman, R. E. (1960) . A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82 (1) , 35-45. https://doi.org/10.1115/1.3662552.
    [13] Li, Q., Kamaruddin, N., Yuhaniz, S. S., & Al-Jaifi, H. A. A. (2024) . Forecasting stock prices changes using long-short term memory neural network with symbolic genetic programming. Scientific Reports, 14, Article 422. https://doi.org/10.1038/s41598-023-50783-0.
    [14] Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foerster, J., Singh, S., & Behbahani, F. (2023) . Structured state space models for in-context reinforcement learning. In Advances in Neural Information Processing Systems. https://doi.org/10.48550/arXiv.2303.03982.
    [15] Mohapatra, S., Mukherjee, R., Roy, A., Sengupta, A., & Puniyani, A. (2022) . Can ensemble machine learning methods predict stock returns for Indian banks using technical indicators? Journal of Risk and Financial Management, 15 (8) , 350. https://doi.org/10.3390/jrfm15080350.
    [16] Nelson, D. M. Q., Pereira, A. C. M., & de Oliveira, R. A. (2017).Stock market's price movement prediction with LSTM neural networks. International Joint Conference on Neural Networks (IJCNN), 1419–1426. IEEE. https://doi.org/10.1109/IJCNN.2017.7966019.
    [17] Peng, J., Yang, M., Zhang, Q., & Li, X. (2025) . S4M: S4 for multivariate time series forecasting with missing values. arXiv. https://doi.org/10.48550/arXiv.2503.00900.
    [18] Zhuangwei Shi (2024) . MambaStock: Selective state space model for stock prediction. arXiv preprint, arXiv:2402.18959. https://arXiv.org/abs/2402.18959.
    [19] Somvanshi, S., Islam, M. M., Mimi, M. S., Polock, S. B. B., Chhetri, G., & Das, S. (2025) . From S4 to Mamba: A comprehensive survey on structured state space models. arXiv. https://doi.org/10.48550/arXiv.2503.18970.
    [20] 郝沛毅、歐仁彬、黃天受、林振穎、吳建生(2018)。透過新聞文章預測股價漲跌趨勢-結合情緒分析、主題模型與模糊支持向量機。中華民國資訊管理學報,第二十五卷,第四期,頁 363-396。
    [21] 郭鎮宇(2019)。用長短期記憶模型預測台灣加權股價指數期貨。國立臺灣大學社會科學院經濟學研究所碩士論文。
    [22] 王英全 (2024)。應用ChatGPT與情感分析於預測股價走勢:以台灣50指數成分股為例國立陽明交通大學資訊學院碩士在職專班碩士論文。
    [23] 王懷德 (2022)。新聞情緒對股價報酬的預測能力。國立臺灣大學資訊工程學研究所碩士論文。
    [24] 林怡汝 (2022)。以機器學習預測元大臺灣50的股價。國立臺灣大學國際企業學研究所碩士論文。
    [25] 劉俞含(2018)。XGBoost模型、隨機森林模型、彈性網模型於股價指數趨勢之預測—以台灣、日本、美國為例。國立中山大學財務管理學系研究所碩士論文。
    [26] 洪君緯 (2016)。隨機森林法則預測台灣股價指數趨勢之探討。靜宜大學財務與計算數學系碩士論文。
    [27] 張飛鵬、徐一雄、陳曦、周勇 (2024)。基於新聞文本情緒的區間值股票回報預測研究。計量經濟學報, 4 (1) , 204–230。https://doi.org/10.12012/CJoE2023-0031。
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    112971015
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112971015
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File SizeFormat
    101501.pdf1609KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback