English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118199/149231 (79%)
Visitors : 74194822      Online Users : 420
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159291


    Title: 應用深度學習於流程模型一致性檢驗之研究
    A Deep Learning Approach for Conformance Checking of Process Models
    Authors: 林秉謙
    LIN, PING-CHIEN
    Contributors: 沈錳坤
    Shan, Man-Kwan
    林秉謙
    LIN, PING-CHIEN
    Keywords: 流程探勘
    一致性檢驗
    深度學習
    Process Mining
    Conformance Checking
    Deep Learning
    Date: 2025
    Issue Date: 2025-09-01 16:18:07 (UTC+8)
    Abstract: 流程探勘結合資料科學與流程管理,透過流程發掘、一致性檢驗與優化分析,協助組織探索與改善流程。其中,一致性檢驗的目標在於比較模型與事件紀錄間的相符程度,以診斷流程偏差。一致性檢驗可應用在資訊系統與企業實際流程之間的對齊、稽核組織的運作與執行是否遵循政府或企業規範的流程,也可應用在流程的優化。然而,現有一致性檢驗方法多為離線處理,對大型事件紀錄分析耗時甚鉅。為解決此問題,本研究提出以深度學習取代一般一致性檢驗的模型比對的新方法,由事件紀錄訓練分類模型,辨識合法與不合法的流程案例。本論文研究重點包括:如何產生合法與不合法軌跡、深度學習模型的檢驗效率、模型分類的效果,以及模型訓練所需案例數量。實驗顯示本研究提出的方法於一致性檢驗的可行性,為大型流程資料的快速分析提供新方向。
    Process Mining, which integrates data science and process management, supports this objective through three main functionalities: process discovery, conformance checking, and enhancement. Among these, conformance checking compares observed event logs with reference process models to detect deviations, supporting business alignment, auditing, compliance, and process improvement. However, existing methods are mostly offline and become computationally expensive when applied to large-scale event logs, limiting their applicability in practice.
    To address this challenge, this study explores a deep learning-based alternative for conformance checking. Instead of relying on predefined process models, the proposed approach trains classification models directly on event logs to distinguish between legal and illegal traces. The research focuses on four key issues: how to generate legal and illegal traces, whether deep learning can improve efficiency compared to traditional methods, how effectively models can classify traces, and the case volume required for effective training. Experimental results demonstrate the feasibility of applying deep learning to accelerate conformance checking, providing a promising direction for large-scale process data analysis.
    Reference: [1] W. M. P., van der Aalst, Process Mining: Data Science in Action, 2nd Ed., Springer, 2016.
    [2] J., Carmona, B., van Dongen, & M., Weidlich, Conformance Checking: Foundations, Milestones and Challenges, Process Mining Handbook, pp. 155–190, 2022.
    [3] A., Rozinat, & W. M. P., van der Aalst, Conformance Checking of Processes Based on Monitoring Real Behavior, Information Systems, 33(1), pp. 64–95, 2008.
    [4] A., Adriansyah, J., Munoz-Gama, J., Carmona, B. F., van Dongen, & W. M. P., van der Aalst, Alignment Based Precision Checking, Business Process Management Workshops, pp. 137–149, 2013.
    [5] A., Adriansyah, N., Sidorova, & B. F., van Dongen, Cost-based Fitness in Conformance Checking, 2011 Eleventh International Conference on Application of Concurrency to System Design, pp. 57–66, 2011.
    [6] M., Weidlich, A., Polyvyanyy, N., Desai, J., Mendling, & M., Weske, Process Compliance Analysis Based on Behavioural Profiles. Information Systems, 36(7), pp. 1009–1025, 2011.
    [7] A., Burattin, S. J., van Zelst, A., Armas-Cervantes, B. F., van Dongen, & J., Carmona, Online Conformance Checking Using Behavioural Patterns, Business Process Management, pp. 250–267, 2018.
    [8] M., Camargo, M., Dumas, & O, González-Rojas., Learning Accurate LSTM Models of Business Processes, Business Process Management, pp. 286–302, 2019
    [9] M., Pourbafrani, S., Vasudevan, F., Zafar, Y., Xingran, R., Singh, & W. M. P., van der Aalst, A Python Extension to Simulate Petri Nets in Process Mining, arXiv preprint arXiv:2102.08774, 2021.
    [10] J., Peeperkorn, S., vanden Broucke, & J., De Weerdt, Supervised Conformance Checking Using Recurrent Neural Network Classifiers, Process Mining Workshops, pp. 175–187, 2021.
    [11] J., Wang, D., Yu, X., Ma, C., Liu, V., Chang, & X., Shen, Online Predicting Conformance of Business Process with Recurrent Neural Networks, IoTBDS 2020 - Proceedings of The 5th International Conference on Internet of Things, Big Data and Security, pp. 88–100, 2020.
    [12] J., Lahann, P., Pfeiffer, & P., Fettke, LSTM-Based Anomaly Detection of Process Instances: Benchmark and Tweaks, Process Mining Workshops, pp. 229–241, 2023.
    [13] W. M. P., van der Aalst, Process Mining: Discovery, Conformance and Enhancement of Business Processes, Springer, 2011.
    [14] W. M. P., van der Aalst, A. H. M., ter Hofstede, B., Kiepuszewski, & A. P., Barros, Workflow Patterns, Distributed and Parallel Databases, 14(1), pp. 5–51, 2003.
    [15] W. M. P., van der Aalst, The Application of Petri Nets to Workflow Management, Journal of Circuits, Systems and Computers, 8(1), pp. 21–66, 1998.
    [16] N., Lohmann, E., Verbeek, & R., Dijkman, Petri Net Transformations for Business Processes – A Survey, Transactions on Petri Nets and Other Models of Concurrency II: Special Issue on Concurrency in Process-Aware Information Systems, pp. 49-63, 2009.
    [17] S. J. J., Leemans, D., Fahland, & W. M. P., van der Aalst, Discovering Block-Structured Process Models from Event Logs – A Constructive Approach, Application and Theory of Petri Nets and Concurrency, pp. 311–329, 2013.
    [18] W. M. P., van der Aalst, Process Discovery from Event Data: Relating Models and Logs Through Abstractions, WIREs Data Mining and Knowledge Discovery, 8(3), 2018.
    [19] K., Cho, B., van Merrienboer, Ç., Gülçehre, D., Bahdanau, F., Bougares, H., Schwenk, & Y., Bengio, Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation, arXiv preprint arXiv:1406.1078, 2014.
    [20] M., Abadi, P., Barham, J., Chen, Z., Chen, A., Davis, J., Dean, M., Devin, S., Ghemawat, G., Irving, M., Isard, M., Kudlur, J., Levenberg, R., Monga, S., Moore, D. G., Murray, B., Steiner, P., Tucker, V., Vasudevan, P., Warden, M., Wicke, Y, Yu, X., Zheng, TensorFlow: A System for Large-Scale Machine Learning, arXiv preprint arXiv:1605.08695, 2016.
    [21] A., Berti, S., van Zelst, & D., Schuster, PM4Py: A Process Mining Library for Python, Software Impacts, 17, 2023.
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    110971017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110971017
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    101701.pdf3305KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback