English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 118295/149332 (79%)
造訪人次 : 78062082      線上人數 : 326
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/159234


    題名: 基於多特徵時間序列分群之股價預測
    Stock Price Prediction Based on Multivariate Times Series Clustering
    作者: 林亞璇
    Lin, Ya-Hsuan
    貢獻者: 黃泓智
    林亞璇
    Lin, Ya-Hsuan
    關鍵詞: 多維時間序列分群
    LSTM
    股價預測
    機器學習
    資產配置
    Multivariate Time Series Clustering
    LSTM
    Stock Price Prediction
    Machine Learning
    Asset Allocation
    日期: 2025
    上傳時間: 2025-09-01 16:03:14 (UTC+8)
    摘要: 本研究旨在提出一種整合多特徵時間序列相似性之股票分群方法,結合機器學習建立群內訓練股價預測模型,並且進一步將預測結果應用於投資組合建構。本文使用臺灣上市公司自2019年至2024年之股價與財務資料,先透過動態時間校正距離與歐式距離衡量多個價量資訊或財務比率的時間序列相似性,並以k-medoids演算法進行股票分群,搭配滾動式更新機制反映市場結構之變化,接著於各群內訓練長短期記憶網路(LSTM)模型預測隔日與20日後收盤價,並根據預測結果挑選預期報酬最高之個股依三種不同資產配置策略建構投資組合,回測其績效。
    實證結果顯示,分群後群內訓練模型在預測準確性方面整體優於不分群模型,能有效降低預測誤差,尤其在以價量資訊分群並設定分5群時表現最佳,回測績效方面,分群模型所建構之投資組合於多數情境皆能優於基準模型與大盤。綜合而言,本研究驗證多特徵時間序列分群方法能有效降低資料異質性,提升預測穩定性與投資表現,為股價預測與選股策略提供可行的整合方法。
    This study proposes a stock clustering framework based on the similarity of multivariate time series features, which is integrated with deep learning models for within-cluster stock price prediction. The predictions are further applied to stock selection and portfolio construction. Using data from Taiwan-listed companies between 2019 to 2024, the study computes time series similarity—based on either daily price-volume data or quarterly financial ratios—using Dynamic Time Warping and Euclidean Distance, and applies the k-medoids algorithm for clustering. A rolling mechanism updates cluster assignments annually to reflect structural market changes. Within each cluster, Long Short-Term Memory models are trained to forecast stock prices for the next day and 20 days ahead. Predicted returns are ranked to identify top-performing stocks, which are then used to construct investment portfolios under three asset allocation strategies.
    Empirical results show that clustered models outperform non-clustered baselines in forecasting accuracy, especially when using price-volume features with five clusters. In terms of investment performance, portfolios constructed from the clustered models consistently outperform benchmark models and the market index across most scenarios. Overall, the study demonstrates that multivariate time series clustering effectively reduces data heterogeneity, enhances predictive stability, and improves practical investment outcomes.
    參考文獻: Aithal, P. K., Geetha, M., U, D., Savitha, B., & Menon, P. (2023). Real-Time Portfolio Management System Utilizing Machine Learning Techniques. IEEE Access, 11, 32595–32608. https://doi.org/10.1109/access.2023.3263260
    Amini, S., Hudson, R., Urquhart, A., & Wang, J. (2021). Nonlinearity everywhere: implications for empirical finance, technical analysis and value at risk. The European Journal of Finance, 27(13), 1326–1349. https://doi.org/10.1080/1351847x.2021.1900888
    Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques – Part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941. https://doi.org/10.1016/j.eswa.2008.07.006
    Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140. https://doi.org/10.1016/j.eswa.2019.112896
    Chaweewanchon, A., & Chaysiri, R. (2022). Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning. International Journal of Financial Studies, 10(3). https://doi.org/10.3390/ijfs10030064
    Hyndman, R. J., Wang, E., & Laptev, N. (2015). Large-Scale Unusual Time Series Detection 2015 IEEE International Conference on Data Mining Workshop (ICDMW),
    Li, M., Zhu, Y., Shen, Y., & Angelova, M. (2023). Clustering-enhanced stock price prediction using deep learning. World Wide Web, 26(1), 207–232. https://doi.org/10.1007/s11280-021-01003-0
    Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2975974
    Medarhri, I., Hosni, M., Nouisser, N., Chakroun, F., & Najib, K. (2022). Predicting Stock Market Price Movement using Machine Learning Techniques 2022 8th International Conference on Optimization and Applications (ICOA),
    Phuoc, T., Anh, P. T. K., Tam, P. H., & Nguyen, C. V. (2024). Applying machine learning algorithms to predict the stock price trend in the stock market – The case of Vietnam. Humanities and Social Sciences Communications, 11(1). https://doi.org/10.1057/s41599-024-02807-x
    Savitzky, A. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
    Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017). Forecasting price movements using technical indicators: Investigating the impact of varying input window length. Neurocomputing, 264, 71–88. https://doi.org/10.1016/j.neucom.2016.11.095
    Vásquez Sáenz, J., Quiroga, F. M., & Bariviera, A. F. (2023). Data vs. information: Using clustering techniques to enhance stock returns forecasting. International Review of Financial Analysis, 88. https://doi.org/10.1016/j.irfa.2023.102657
    Wang, X., Yang, K., & Liu, T. (2021). Stock Price Prediction Based on Morphological Similarity Clustering and Hierarchical Temporal Memory. IEEE Access, 9, 67241–67248. https://doi.org/10.1109/access.2021.3077004
    Warren Liao, T. (2005). Clustering of time series data—a survey. Pattern Recognition, 38(11), 1857–1874. https://doi.org/10.1016/j.patcog.2005.01.025
    Yu, P., & Yan, X. (2019). Stock price prediction based on deep neural networks. Neural Computing and Applications, 32(6), 1609–1628. https://doi.org/10.1007/s00521-019-04212-x
    描述: 碩士
    國立政治大學
    風險管理與保險學系
    112358017
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0112358017
    資料類型: thesis
    顯示於類別:[風險管理與保險學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    801701.pdf3138KbAdobe PDF0檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋