Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/159093
|
| Title: | 探討跨鏈時間雜湊鎖算法之逾時議題 Investigation of the Practical Timeout Issue in Cross-Chain Hashed Time-Locked Contracts |
| Authors: | 王博揚 WANG, PO-YANG |
| Contributors: | 陳恭 Chen, Kung 王博揚 WANG, PO-YANG |
| Keywords: | 國立政治大學 跨鏈技術 時間雜湊鎖合約 鏈外計時器 資產代幣化 實體資產 穩定幣 區塊鏈 NCCU Cross-chain Technology Hash Timelock Contract, Off-chaintimers Asset Tokenization Real World Assets Stablecoin Blockchain |
| Date: | 2025 |
| Issue Date: | 2025-09-01 15:04:41 (UTC+8) |
| Abstract: | 本研究探討跨鏈時間雜湊鎖算法(HTLC)在數位資產支付系統中的技術實作問題。隨著全球金融市場邁向數位化,金融機構對於跨鏈資產之應用需求日益增加。研究分析了歐洲央行、日本央行以及新加坡金融管理局等機構對HTLC的研究成果,發現時間鎖機制在實際應用中存在諸多挑戰。研究聚焦於非託管式跨鏈橋接的架構設計,針對這些機構普遍提出的時間鎖相關問題,提出改進方案。本研究針對數位資產跨鏈支付的HTLC算法的實踐中,可能遇到的逾時問題進行分析,並提出使用鏈外計時器的建議,對提升數位資產所需用到數位支付方案,提供了安全且具合規潛力的技術基礎。 This study investigates the technical implementation challenges of Hash Time-Locked Contracts (HTLC) in cross-chain digital asset payment systems. As the global financial market advances toward digitalization, financial institutions are showing increasing de mand for cross-chain asset applications. The research reviews findings from institutions such as the European Central Bank, the Bank of Japan, and the Monetary Authority of Singapore, revealing that time-lock mechanisms face multiple challenges in practical de ployment. Focusing on the architectural design of non-custodial cross-chain bridges, the study proposes improvements to address common time-lock issues raised by these insti tutions. Specifically, it analyzes potential timeout problems in the practical use of HTLC for cross-chain digital asset payments and recommends the use of off-chain timers as a mitigation strategy. The results provide a secure and compliance-ready technical foun dation for enhancing digital payment schemes involving digital assets. |
| Reference: | Bank for International Settlements (2021). Central bank digital currencies for cross-border payments report to the g20. Technical report, BIS. Bank for International Settlements (2022). Project mBridge: Connecting economies through CBDC. Technical report, BIS. Binance News (2024). Critical Vulnerability Found In Inter-Blockchain Communication Protocol. https://www.binance.com/en/square/post/ 2024-04-23-critical-vulnerability-found-in-inter-blockchain-communication-protocol-7171198376001. Accessed: 2025-05-18. Blockstream (2020). Liquid sounds promising, but how does it work? Accessed: 2025-05-18. Chainlink Labs (2024a). 3 key architectural decisions behind ccip’s advanced security. https://blog. chain.link/ccip-security-features/. Accessed: 2025-05-18. Chainlink Labs (2024b). Chainlink ccip architecture. https://docs.chain.link/ccip/architecture. Ac- cessed: 2025-05-18. Chervinski, J. O., Kreutz, D., Xu, X., and Yu, J. (2023). Analyzing the performance of the inter- blockchain communication protocol. arXiv preprint arXiv:2303.10844. Cosmos Network (2023). Inter-blockchain communication protocol. Technical specification, Cosmos. European Central Bank and Bank of Japan (2020). Securities settlement systems: delivery-versus- payment in a distributed ledger environment. Technical report, ECB and BOJ. This report, often referring to Project Stella Phase 4, discusses confidentiality and auditability. For direct discussion on DvP and HTLC time-lock risks, the earlier Project Stella Phase 2 report from 2018 ( https: //www.ecb.europa.eu/pub/pdf/other/stella_project_report_march_2018.pdf ) is highly relevant. Federal Reserve Bank of New York (2022). Phase One Report Technical Appendix. Technical report, Federal Reserve Bank of New York. Federal Reserve Bank of New York (2023). Project Cedar Phase II x Ubin+. Technical report, Federal Reserve Bank of New York. Financial Action Task Force (2022). Targeted update on implementation of the FATF standards on virtual assets and virtual asset service providers. Technical report, FATF. Fries, C. P. and Kohl-Landgraf, P. (2023). A proposal for a lean and functional delivery versus payment across two blockchains. arXiv preprint arXiv:2311.05966v1. Version 1, submitted on November 10, 2023. Herlihy, M. (2018). Atomic cross-chain swaps. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pages 245–254. ACM. Kotey, S. D., Tchao, E. T., Ahmed, A.-R., et al. (2023). Blockchain interoperability: The state of heterogeneous blockchain-to-blockchain communication. IET Communications, 17:891–914. LayerZero Labs, Inc. (2023). Layerzero documentation. https://docs.layerzero.network/v2#:~:text=,chain. Accessed: 2025-05-18. Lu, Y.-H., Yeh, C.-C., and Kuo, Y.-M. (2024). Exploring the critical factors affecting the adoption of blockchain: Taiwan’s banking industry. Financial Innovation, 10(23). MAP Protocol (2023). Map protocol white paper. https://www.mapprotocol.io/article?id=whitepaper. Accessed: 2025-05-18. MAS, SGX, Anquan Capital, Deloitte and Nasdaq (2020). Project ubin dvp on distributed ledger technologies. Technical report, MAS. Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Self-published. Nolan, T. (n.d.). Atomic swap - bitcoin wiki. https://en.bitcoin.it/wiki/Atomic_swap. Accessed: 2025-05-18. Poly Network (2022). Poly Network Attack Incident Analysis. https://medium.com/coinmonks/ cross-chain-bridge-vulnerability-summary-f16b7747f364. Accessed: 2025-05-18. Zarick, R., Pellegrino, B., and Banister, C. (2023). Layerzero: Trustless inter-chain transactions. https://layerzero.network/pdf/LayerZero_Whitepaper_Release.pdf. Accessed: 2025-05-18. |
| Description: | 碩士 國立政治大學 資訊管理學系 112356023 |
| Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112356023 |
| Data Type: | thesis |
| Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
| File |
Description |
Size | Format | |
| 602301.pdf | | 1626Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|