English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118291/149328 (79%)
Visitors : 78006144      Online Users : 347
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/159086
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/159086


    Title: 瓦斯行產業數位轉型電子準備度之研究: 以智慧瓦斯平台為核心之案例探討
    The Study of Digital Transformation Maturity in the Gas Industry: A Case Study Centered on Smart Gas Platform
    Authors: 徐綾襄
    Ser, Ling Xiang
    Contributors: 洪為璽
    Hung, Wei-Hsi
    徐綾襄
    Ser, Ling Xiang
    Keywords: 瓦斯行產業
    智慧瓦斯平台
    數位轉型
    電子準備度
    質性研究
    Gas industry
    Smart gas platform
    Digital transformation
    E-readiness
    Qualitative research
    Date: 2025
    Issue Date: 2025-09-01 15:03:01 (UTC+8)
    Abstract: 本研究旨在探討智慧瓦斯平台的發展及其對瓦斯行業的影響,聚焦於瓦斯行產業使用智慧瓦斯平台進行數位轉型之情況。主要目的為評估瓦斯行業的電子準備度(e-readiness),探討業者採納新技術的準備狀態。此外,本研究分析平台管理者與瓦斯行產業業者之間的成本與利益關係,在導入過程中成本如何分配,識別並平衡利益相關者的需求和期望,以協助智慧瓦斯平台的推行發展。
    研究方法採用質性研究,透過個案研究法和次級資料分析,進行深度訪談和資料蒐集,了解智慧瓦斯平台的運作模式、技術應用及其對行業的影響。本研究以半結構式訪談為主,主要訪談對象為兩家智慧瓦斯平台及兩家傳統瓦斯行業者,包含平台工程師及高階主管。訪談大綱參考Molla與Licker(2005)提出的電子準備度模型(PERM),蒐集資料包含大約80篇文獻研究、多家新聞媒體報導、政府官方活動宣導、學者專家意見等。研究流程涵蓋文獻探討、資料使用演繹式內容分析法及結論歸納,輔以直接觀察、文件檔案等次級資料,確保分析的全面性。
    數位轉型不僅僅是技術的應用,更是一場涉及組織、產品和流程作業的全面變革。通過數位技術,企業可以提升經營績效,擴展影響力,並應對快速變化的市場需求。傳統瓦斯行業通過智慧瓦斯平台的應用,可以有效地整合資源、使用數位技術解決這些問題。平台透過即時監控管理瓦斯桶,提高運營效率和安全性,並通過數據分析預測需求,優化資源配置。此外,智慧瓦斯平台還能幫助瓦斯行業降低運營成本,提升競爭力,推動產業的數位轉型和可持續發展。
    研究結論顯示,瓦斯行產業雖已建立一定程度的數位知覺,但從訪談結果得知瓦斯行屬於被動轉型狀態。管理者理解趨勢但缺乏內化為策略的動力,受限於風險保守、成本壓力及外部環境。針對成本分擔,七種情境分析顯示,三方協同分擔最具潛力,需搭配政策補助與教育推廣。智慧瓦斯平台代表了瓦斯行業數位轉型的重要方向,其技術應用不僅提升了配送效率和安全性,還改善了用戶體驗。然而,技術成本、系統複雜性和用戶接受度仍是推廣的主要挑戰。未來,需要進一步平衡技術發展與成本效益,並加強用戶教育和培訓,促進智慧瓦斯平台的廣泛應用和推廣。
    This study aims to explore the development of smart gas platforms and their impact on the gas distribution industry, focusing on the digital transformation of gas companies through the adoption of such platforms. The primary objective is to assess the e-readiness of the gas industry, examining the preparedness of companies to adopt new technologies. Additionally, the study analyzes the cost-benefit relationships between platform managers and gas industry stakeholders, exploring how costs are allocated during implementation, identifying and balancing the needs and expectations of stakeholders to facilitate the development and adoption of smart gas platforms.
    The research employs a qualitative approach, utilizing case studies and secondary data analysis, conducting in-depth interviews and data collection to understand the operational models, technical applications, and industry impacts of smart gas platforms. Semi-structured interviews were conducted with key stakeholders from two smart gas platforms and two traditional gas companies, including platform engineers and senior executives. The interview framework was based on the Perceived e-Readiness Model (PERM) proposed by Molla and Licker (2005). Data collection included approximately 80 academic studies, news media reports, government promotional activities, and expert opinions. The research process involved literature review, deductive content analysis, and conclusion synthesis, supplemented by direct observations and archival documents to ensure comprehensive analysis.
    Digital transformation is not merely the application of technology but a holistic change involving organization, products, and operational processes. Through digital technologies, businesses can enhance operational performance, expand influence, and address rapidly changing market demands. By adopting smart gas platforms, the traditional gas industry can effectively integrate resources and leverage digital technologies to address challenges. These platforms enable real-time monitoring of gas cylinders, improving operational efficiency and safety, while data analytics facilitate demand forecasting and resource optimization. Moreover, smart gas platforms help reduce operational costs, enhance competitiveness, and promote digital transformation and sustainable development in the industry.
    The study concludes that while the gas industry has developed a certain level of digital awareness, interview results indicate a passive transformation stance. Managers understand trends but lack the motivation to internalize them into strategies, constrained by risk aversion, cost pressures, and external environments. Regarding cost allocation, analysis of seven scenarios suggests that tripartite cost-sharing holds the most potential, requiring support from policy subsidies and educational promotion. Smart gas platforms represent a critical direction for the industry’s digital transformation, enhancing delivery efficiency, safety, and user experience. However, technical costs, system complexity, and user acceptance remain key challenges for adoption. In the future, balancing technological development with cost-effectiveness and strengthening user education and training will be essential to promote the widespread adoption and implementation of smart gas platforms.
    Reference: 林韋葳 (2019)。CRM 系統對客戶滿意度的影響。資訊管理學報, 25(3), 123–140。
    侯昌佑 (2014)。台北智慧城市發展。台北市政府。
    彭思遠 (2019)。數位工具在企業競爭力提升中的應用。管理學報, 36(2), 45–60。
    解鴻年 (2014)。數位治理與智慧城市:台北市的實務經驗。公共行政學報, 50, 1–25。
    Acs, Z. J., Song, A. K., Szerb, L., Audretsch, D. B., & Komlósi, É. (2021). The evolution of the global digital platform economy: 1971–2021. Small Business Economics, 57(4), 1629–1659.
    https://doi.org/10.1007/s11187-021-00561-x
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095
    Aloisi, A., & De Stefano, V. (2020). Regulation and the future of work: The employment relationship as an innovation facilitator. International Labour Review, 159(1), 47–69.
    https://doi.org/10.1111/ilr.12160
    AlMulhim, A. F. (2021). Smart supply chain and firm performance: The role of digital technologies. Business Process Management Journal, 27(5), 1353–1372. https://doi.org/10.1108/BPMJ-12-2020-0573
    APEC. (2000). E-Commerce Maturity Model. Asia-Pacific Economic Cooperation.
    Anthopoulos, L. G. (2017). Understanding smart cities: A tool for smart government or an industrial trick? Springer.
    https://doi.org/10.1007/978-3-319-57015-0
    Attaran, M., Attaran, S., & Celik, B. G. (2023). The impact of smart technology on supply chain and logistics management. Journal of Supply Chain Management, 59(1), 47–60. https://doi.org/10.1111/jscm.12285
    Bélanger, F., & Crossler, R. E. (2011). Privacy in the digital age: A review of information privacy research in information systems. MIS Quarterly, 35(4), 1017–1041.
    Bi, Z., Wang, L., & Li, X. (2022). Cloud mining mode for digital transformation in traditional mining industry. Computers & Industrial Engineering, 165, Article 107942. https://doi.org/10.1016/j.cie.2022.107942
    Bloomberg, J. (2018). Digitization, digitalization, and digital transformation: Confuse them at your peril. Forbes. https://www.forbes.com/sites/jasonbloomberg/2018/04/29/digitization-digitalization-and-digital-transformation-confuse-them-at-your-peril/
    Brito, J., Moreno, J. A., & Verdegay, J. L. (2012). Fuzzy optimization for distribution of frozen food with imprecise times. Fuzzy Sets and Systems, 202, 65–82. https://doi.org/10.1016/j.fss.2012.01.014
    Carlsson, B. (2004). The digital economy: What is new and what is not? Structural Change and Economic Dynamics, 15(3), 245–264.
    Castro Benavides, L. M., Tamayo Arias, J. A., Arango Serna, M. D., Branch Bedoya, J. W., & Burgos, D. (2022). Digital transformation in enterprises: A systematic review. Procedia Computer Science, 204, 480–487.
    Chen, J. V., Jubilado, R. J. M., Capistrano, E. P. S., & Yen, D. C. (2015). Factors affecting the adoption of electronic commerce for small and medium-sized enterprises in China. Information Development, 31(1), 53–65.
    Chen, X., Li, Y., & Wang, Z. (2024). Managerial risk aversion and digital transformation: The role of incentives. Journal of Business Research, 170, 114-130. https://doi.org/10.1016/j.jbusres.2023.114130
    Chen, Y., & Tian, Y. (2022). Flexible resource allocation in uncertain market environments. European Journal of Operational Research, 296(1), 218–231.
    Chwiłkowska-Kubala, A., Cyfert, S., Malewska, K., Mierzejewska, K., & Szumowski, W. (2023). The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation. Technology in Society, 74, 102315.
    https://doi.org/10.1016/j.techsoc.2023.102315
    Clifford, G. D., Clifton, D. A., & Tarassenko, L. (2018). Signal processing for the Internet of Things. IEEE Signal Processing Magazine, 35(1), 6–8. https://doi.org/10.1109/MSP.2017.2768578
    Corchado, J. M., Chamoso, P., & Hernández, G. (2021). Deepint.net: A rapid deployment platform for smart territories. Sensors, 21(7), Article 2365. https://doi.org/10.3390/s21072365
    Daniel, E., Wilson, H., & Myers, A. (2002). Adoption of e-commerce by SMEs in the UK: Towards a stage model. International Small Business Journal, 20(3), 253–270.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
    DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30.
    Dekkati, S., Thaduri, U. R., & Lal, K. (2016). Business value of digitization: Curse or blessing. Global Disclosure of Economics and Business, 5(2), 133–138.
    Dohale, V., Akhtar, P., Verma, P., & Ambilkar, P. (2023). Supply chain risk mitigation strategies during COVID-19: Exploratory cases of make-to-order handloom saree apparel industries. International Journal of Physical Distribution & Logistics Management, 51(9), 1099–1126. https://doi.org/10.1108/IJPDLM-12-2020-0444
    Dutta, S., Lanvin, B., & Paua, F. (Eds.). (2004). The global information technology report 2003-2004: Towards an equitable information society. World Economic Forum.
    Economist Intelligence Unit (EIU). (2009). E-readiness rankings. Economist Intelligence Unit Limited.
    Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115.
    Epstein, M. J., & Buhovac, A. R. (2014). Making sustainability work: Best practices in managing and measuring corporate social, environmental, and economic impacts (2nd ed.). Berrett-Koehler Publishers.
    Eurostat. (2006). Science, technology and innovation in Europe. European Communities.
    Fitzgerald, M., Kruschwitz, N., Bonnet, D., & Welch, M. (2014). Embracing digital technology. MIT Sloan Management Review, 55(2), 1–13.
    Flanagin, A. J. (2000). Social pressures on organizational website adoption. Human Communication Research, 26(4), 618–646.
    Gartner. (2020). Gartner top 10 strategic technology trends for 2020. Gartner.
    Gavrilović, N., & Mishra, A. (2021). Software architecture of the Internet of Things (IoT) for smart city, healthcare and agriculture: Analysis and improvement directions. Journal of Ambient Intelligence and Smart Environments, 13(2), 145–168. https://doi.org/10.3233/AIS-210594
    Gong, C., & Ribiere, V. (2021). Developing a unified definition of digital transformation. Technovation, 102, 102217.
    Grandon, E. E., & Pearson, J. M. (2004). Electronic commerce adoption: An empirical study of small and medium US businesses. Information & Management, 42(1), 197–216.
    Gyamfi, B. A. (2024). Digital transformation in agriculture: A review. Sustainability, 16(5), Article 2089. https://doi.org/10.3390/su16052089
    Haghighi, M., Divandari, A., & Keimasi, M. (2010). The impact of 3D e-readiness on e-banking development in Iran: A fuzzy AHP analysis. Expert Systems with Applications, 37(6), 4084–4093. https://doi.org/10.1016/j.eswa.2009.11.074
    Hanga, K. M., & Kovalchuk, Y. (2019). Machine learning and multi-agent systems in oil and gas industry applications: A survey. Computer Science Review, 34, Article 100191. https://doi.org/10.1016/j.cosrev.2019.08.002
    Harris, S., & Lyne, P. (2008). The use of cluster analysis for the segmentation of industrial markets: A new test. In Proceedings of the Academy of Marketing Conference.
    Hartl, E., & Hess, T. (2017). The role of cultural values for digital transformation: Insights from a Delphi study. Proceedings of the 23rd Americas Conference on Information Systems (AMCIS), 1–10. https://aisel.aisnet.org/amcis2017/Global/Presentations/8/
    Hartl, E., & Hess, T. (2019). Digital transformation strategies. Business & Information Systems Engineering, 61(2), 229–239.
    Ilin, I., Levina, A., & Iliashenko, O. (2019). Enterprise architecture modeling in energy sector: A literature review. Energy Systems Research, 2(1), 1–13.
    Ifinedo, P. (2011). An empirical analysis of factors influencing Internet/e-business technologies adoption by SMEs in Canada. Electronic Commerce Research, 11(2), 125–150.
    Jasperson, J. S., Carter, P. E., & Zmud, R. W. (2005). A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS Quarterly, 29(3), 525–557.
    Legner, C., Eymann, T., Hess, T., Matt, C., Böhmann, T., Drews, P., Mädche, A., Urbach, N., & Ahlemann, F. (2017). Digitalization: Opportunity and challenge for the business and information systems engineering community. Business & Information Systems Engineering, 59(4), 301–308.
    https://doi.org/10.1007/s12599-017-0484-2
    Li, L., Su, F., Zhang, W., & Mao, J.-Y. (2018). Digital transformation by SME entrepreneurs: A capability perspective. Information Systems Journal, 28(6), 1129–1157.
    https://doi.org/10.1111/isj.12153
    Lu, H., & Shaharudin, M. S. (2024). Role of digital transformation for sustainable competitive advantage of SMEs: A systematic literature review. Cogent Business & Management, 11(1), 2419489.
    https://doi.org/10.1080/23311975.2024.2419489
    Maroufkhani, P., Tseng, M.-L., Iranmanesh, M., Ismail, W. K. W., & Khalid, H. (2022). Big data analytics adoption: Determinants and performances among small to medium-sized enterprises. International Journal of Information Management, 54, Article 102190. https://doi.org/10.1016/j.ijinfomgt.2020.102190
    Maswera, T., Dawson, R., & Edwards, J. (2008). E-commerce adoption of travel and tourism organisations in South Africa, Kenya, and Uganda. African Journal of Information Systems, 1(2), 20–36.
    Matt, C., Hess, T., & Benlian, A. (2015). Digital transformation strategies. Business & Information Systems Engineering, 57(5), 339–343.
    McConnell International. (2000). Risk e-business: Seizing the opportunity. McConnell International.
    Medeiros, A., Hoppen, N., & Maçada, A. C. G. (2017). Smart technologies and their impact on cities. Cities, 61, 130–139.
    Mehrtens, J., Cragg, P. B., & Mills, A. M. (2001). A model of Internet adoption by SMEs. Information & Management, 39(3), 165–176. https://doi.org/10.1016/S0378-7206(01)00086-6
    Mohaghegh, S. D. (2005). Recent developments in application of artificial intelligence in petroleum engineering. Journal of Petroleum Technology, 57(4), 86–91. https://doi.org/10.2118/89033-MS
    Molla, A., & Licker, P. S. (2005). Perceived e-readiness factors in e-commerce adoption. Journal of Electronic Commerce Research, 6(2), 76–87.
    Mrazovic, P., Larriba-Pey, J. L., & Matskin, M. (2018). Multi-vehicle route planning for efficient urban freight transport. Proceedings of the 9th International Conference on Intelligent Systems, 744–753.
    Mutula, S. M., & Van Brakel, P. (2006). An evaluation of e-readiness assessment tools with respect to information access. International Journal of Information Management, 26(3), 212–223.
    Nambisan, S., Lyytinen, K., Majchrzak, A., & Song, M. (2019). Digital innovation management: Reinventing innovation management research in a digital world. MIS Quarterly, 41(1), 223–238. https://doi.org/10.25300/MISQ/2017/41:1.03
    Nam, T., & Pardo, T. A. (2011). Conceptualizing smart city with dimensions of technology, people, and institutions. Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, 282–291. https://doi.org/10.1145/2037556.2037602
    Ngai, E. W. T., Poon, J. K. L., & Chan, Y. H. C. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250–267. https://doi.org/10.1016/j.compedu.2004.11.018
    Ni, Q., Yu, C., & Zheng, Q. (2021). Application of Internet of Things in gas monitoring and leak detection. Sensors, 21(7), 2541.
    Norman, G. (2010). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15(5), 625–632.
    Pellicer, S., Santa, G., & Bleda, A. L. (2013). Smart cities: An overview. Procedia Computer Science, 24, 1–7.
    Piccinini, E., Hanelt, A., Gregory, R., & Kolbe, L. M. (2015). Transforming industrial business: The impact of digital transformation on automotive organizations. Proceedings of the 36th International Conference on Information Systems, 1–20. https://aisel.aisnet.org/icis2015/proceedings/GeneralIS/13/
    Porter, M. E. (1985). Competitive advantage: Creating and sustaining superior performance. Free Press.
    Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., Atiquzzaman, M., & Niyato, D. (2020). A survey on the role of Internet of Things for effective cardiovascular disease diagnosis and treatment. Computers in Biology and Medicine, 116, Article 103407. https://doi.org/10.1016/j.compbiomed.2020.103407
    Riemenschneider, C. K., Harrison, D. A., & Mykytyn, P. P. (2003). Understanding IT adoption decisions in small business: Integrating current theories. Information & Management, 40(4), 269–285. https://doi.org/10.1016/S0378-7206(02)00010-1
    Robertson, J., & Smith, H. (2019). Sociocultural theory and translanguaging-to-learn: Proposed conceptual integration. Language and Sociocultural Theory, 6(2), 132–151. https://doi.org/10.1558/lst.18500
    Rogers, E. M. (1995). Diffusion of innovations (4th ed.). The Free Press.
    Ruikar, K., Anumba, C. J., & Carrillo, P. M. (2006). VERDICT—An e-readiness assessment application for construction companies. Automation in Construction, 15(1), 98–110. https://doi.org/10.1016/j.autcon.2005.07.009
    Sabherwal, R., & Chan, Y. E. (2001). Alignment between business and IS strategies: A study of prospectors, analyzers, and defenders. Information Systems Research, 12(1), 11–33. https://doi.org/10.1287/isre.12.1.11.9714
    Schmarzo, W. (2017). Big data MBA: Driving business strategies with data science. Wiley.
    Solis, B. (2017). The race against digital Darwinism: Six stages of digital transformation. Altimeter Group.
    https://www.prophet.com/altimeter/the-race-against-digital-darwinism-six-stages-of-digital-transformation/
    Stolterman, E., & Fors, A. C. (2004). Information technology and the good life. In Information Systems Research (pp. 687–692). Springer. https://doi.org/10.1007/978-0-387-24590-4_40
    Tan, J., Tyler, K., & Manica, A. (2007). Business-to-business adoption of eCommerce in China. Information & Management, 44(3), 332–351. https://doi.org/10.1016/j.im.2007.04.001
    Tapscott, D. (2009). Grown up digital: How the net generation is changing your world. McGraw-Hill.
    Thong, J. Y. L. (2001). Resource constraints and information systems implementation in Singaporean small businesses. Omega, 29(2), 143–156.
    Van Veldhoven, Z., & Vanthienen, J. (2019). Digital transformation as an interaction- driven perspective. Procedia Computer Science, 151, 560–567.
    Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022
    Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/10.1016/j.jsis.2019.01.003
    Von Tunzelmann, N., & Acha, V. (2006). Innovation in “low-tech” industries. In The Oxford handbook of innovation (pp. 407–432). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199286805.003.0016
    Waliany, T., Varia, S., & Kalanick, T. (2018). Optimizing delivery efficiency with machine learning at Uber Eats. Uber Engineering Blog. https://eng.uber.com/optimizing-delivery-efficiency/
    Wang, K. C. P., Xiao, D., & Xu, G. (Eds.). (2008). Traffic and transportation studies 2008: Proceedings of the sixth international conference on traffic and transportation studies. American Society of Civil Engineers. https://doi.org/10.1061/9780784409954
    Wang, S., Carmeline, A., Kolko, B., & Munson, S. (2024). Understanding the role of technology in older adults' changing social networks in the COVID-19 era and beyond. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW1), Article 234.
    https://doi.org/10.1145/3641027
    Wirtz, B. W. (2021). Digital business and electronic commerce: Strategy, business models and technology. Springer. https://doi.org/10.1007/978-3-030-63482-7
    Wirtz, J., & Lovelock, C. (2021). Services marketing: People, technology, strategy. World Scientific.
    World Economic Forum (WEF). (2016). Digital transformation of industries. World Economic Forum.
    Young, K. S., & Rogers, R. C. (2019). Internet addiction: Emerging treatment strategies. In Handbook of Addictive Disorders (pp. 396–415). Routledge.
    Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on e-business. Management Science, 52(10), 1557–1576.
    https://doi.org/10.1287/mnsc.1060.0607
    Description: 碩士
    國立政治大學
    資訊管理學系
    111356054
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111356054
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File Description SizeFormat
    605401.pdf1995KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback