English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118575/149625 (79%)
Visitors : 79483593      Online Users : 384
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158983


    Title: 多星系精密單點定位 - 整數週波未定值求解於控制測量之評估
    Assessment of Multi-GNSS PPP-AR for Control Surveying
    Authors: 王佑靖
    Wang, Yu-Ching
    Contributors: 甯方璽
    Ning, Fang-Shii
    王佑靖
    Wang, Yu-Ching
    Keywords: 精密單點定位
    整數週波未定值求解
    控制測量
    Precise Point Positioning (PPP)
    Ambiguity Resolution (AR)
    Control Surveying
    Date: 2025
    Issue Date: 2025-09-01 14:36:12 (UTC+8)
    Abstract: 近年來,控制測量需求逐漸拓展至控制點稀疏以及通訊不易設置之區域,傳統需依賴基準站的相對定位方式在此類情況下面臨作業困難與佈設限制。精密單點定位(Precise Point Positioning, PPP)因其不需佈設基準站,具備高精度與高作業彈性,成為提升測量效率的重要選項。然而,傳統 PPP 模式需長時間觀測方能達成公分級精度,限制其於即短時應用之可行性。為克服此限制,PPP 整數週波未定值求解技術(PPP Ambiguity Resolution, PPP-AR)應運而生,透過整數週波未定值求解可顯著縮短收斂時間,提升短時間定位精度。同時,結合多星系觀測量增加可以有效改善幾何分布,有助進一步提升解算穩定性。當多星系的結合與 PPP-AR 技術整合後,可有效滿足山區與通訊設施不易設置地區之定位需求。
    本研究使用多星系 PPP-AR 技術來評估地籍圖根點建置之應用潛力。研究首先利用 IGS 測站資料,模擬不同觀測時長與遮蔽環境(10°與30°截止角)。成果顯示,在短時段(0.5 至 2 小時)內具備明顯優勢,其水平方向定位精度可穩定控制於 2 公分內,較雙星系或實數解有顯著改善。接下來,進一步以花蓮縣卓溪鄉實測資料進行驗證,評估多星系 PPP-AR 在實際控制測量作業條件下之可行性。成果顯示,在不同觀測時長與環境條件下,多星系 PPP-AR 能有效提升定位精度與穩定性,其中於 2 小時觀測時長條件下,其水平方向定位精度可達 2.2 公分。這些分析皆指出,在控制點稀疏的山區以及通訊設置困難時,多星PPP-AR具備了地籍圖根建置之潛力。然而,在台灣,目前PPP-AR應用於控制測量的法規尚未明確定義,本研究之成果將可以成為未來法規在定義上之有用參考基礎。
    In recent years, the demand for control surveys has expanded into areas with sparse control points and limited communication infrastructure. Traditional relative positioning methods that rely on reference stations face operational challenges and deployment constraints in such environments. Precise Point Positioning (PPP), which does not require the installation of local base stations, offers high positioning accuracy and operational flexibility, making it an effective solution for improving survey efficiency. However, conventional PPP requires long observation times to achieve centimeter-level accuracy, limiting its feasibility for short-term applications. To address this limitation, PPP Ambiguity Resolution (PPP-AR) techniques have been developed. By resolving integer ambiguities, PPP-AR significantly reduces convergence time and enhances positioning accuracy in shorter sessions. Additionally, incorporating multi-GNSS observations improves satellite geometry and further enhances the stability of position solutions. The integration of multi-GNSS and PPP-AR technologies thus presents a promising approach for positioning in mountainous regions and areas where communication infrastructure is difficult to establish.
    This study evaluates the applicability of multi-GNSS PPP-AR in the establishment of cadastral control points. Using IGS station data, we simulated positioning performance under different observation durations and elevation mask angles (10° and 30°). Results show that multi-GNSS PPP-AR offers clear advantages for short observation periods (0.5 to 2 hours), with horizontal positioning accuracy consistently within 2 centimeters—significantly better than dual-GNSS or float solutions. Further validation was conducted using field data collected in Zhuoxi Township, Hualien County, to assess feasibility under actual control survey conditions. The analysis indicates that multi-GNSS PPP-AR can effectively improve both positioning accuracy and stability, achieving a horizontal accuracy of 2.2 centimeters with a 2-hour observation duration. These findings suggest that multi-GNSS PPP-AR holds significant potential for cadastral control point densification in mountainous areas with sparse control networks and limited communication access. However, in Taiwan, the legal framework for applying PPP-AR in control surveys has yet to be clearly defined. The results of this study may serve as a valuable reference for future regulatory developments.
    Reference: Bahadur, B., & Nohutcu, M. (2021). Impact of observation sampling rate on Multi-GNSS static PPP performance. Survey Review, 53(378), 206-215.
    Banville, S., Hassen, E., Lamothe, P., Farinaccio, J., Donahue, B., Mireault, Y., Goudarzi, M. A., Collins, P., Ghoddousi-Fard, R., & Kamali, O. (2021). Enabling ambiguity resolution in CSRS-PPP. NAVIGATION: Journal of the Institute of Navigation, 68(2), 433-451.
    Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780.
    Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17, 223-236.
    Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56(1), 133-143.
    Chu, F.-Y., & Chen, Y.-W. (2023). Monitoring structural displacements on a wall with five-constellation precise point positioning: A position-constrained method and the performance analyses. Remote Sensing, 15(5), 1314.
    Denys, P., Liggett, A., Odolinski, R., Pearson, C., Stewart, D., & Winefield, R. (2017). Network RTK-New Zealand: A Summary of the Concepts, Methods, Limitations and Services in New Zealand. NZIS Positioning and Measurement.
    El-Mowafy, A. (2012). Precise real-time positioning using Network RTK. Global navigation satellite systems: signal, theory and applications, 7, 161-188.
    Erol, S., Alkan, R. M., Ozulu, İ. M., & Ilçi, V. (2021). Impact of different sampling rates on precise point positioning performance using online processing service. Geo-spatial information science, 24(2), 302-312.
    Ge, M., Gendt, G., Rothacher, M. a., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of geodesy, 82, 389-399.
    Geng, J., Meng, X., Dodson, A. H., Ge, M., & Teferle, F. N. (2010). Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. Journal of geodesy, 84, 705-714.
    Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. (2010). Integer ambiguity resolution in precise point positioning: method comparison. Journal of geodesy, 84, 569-581.
    Geng, J., Teferle, F. N., Meng, X., & Dodson, A. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664-1673.
    Goad, C. C. (1974). A modified Hopfield tropospheric refraction correction model. Paper presented at the Fall Annual Meeting American Geophysical Union, 1974,
    International GNSS Service. (n.d.). Data & products overview. Retrieved December 14 from https://igs.org/data-products-overview/
    Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., & Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149.
    Leick, A. (2015). GPS satellite surveying. Wiley.
    Li, P., & Zhang, X. (2014). Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS solutions, 18, 461-471.
    Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6), 607-635.
    Liu, Y., Ye, S., Song, W., Lou, Y., & Gu, S. (2017). Rapid PPP ambiguity resolution using GPS+ GLONASS observations. Journal of geodesy, 91, 441-455.
    Martín, A., Anquela, A., Capilla, R., & Berné, J. (2011). PPP technique analysis based on time convergence, repeatability, IGS products, different software processing, and GPS+ GLONASS constellation. Journal of Surveying Engineering, 137(3), 99-108.
    Píriz, R., Calle, D., Mozo, A., Navarro, P., Rodríguez, D., & Tobías, G. (2009). Orbits and clocks for GLONASS precise-point-positioning. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009),
    Teunissen, P. J. (1998). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of geodesy, 72, 606-612.
    Teunissen, P. J., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems (Vol. 10). Springer.
    Teunnissen, P. (1995). The least-square ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geodesy, 70(1), 65-82.
    Wang, G., Blume, F., Meertens, C., Ibanez, P., & Schulze, M. (2012). Performance of high-rate kinematic GPS during strong shaking: Observations from shake table tests and the 2010 Chile earthquake. Journal of Geodetic Science, 2(1), 15-30.
    Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., & Yanagidani, T. (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of geodesy, 87, 361-372.
    Yang, M., Hsu, H.-C., & Chu, F.-Y. (2024). Taiwan Online Precise Point Positioning Service: Methodology and Test Results. Journal of Surveying Engineering, 150(3), 04024007.
    Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017. https://doi.org/10.1029/96jb03860
    Description: 碩士
    國立政治大學
    地政學系
    112257030
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112257030
    Data Type: thesis
    Appears in Collections:[地政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    703001.pdf3299KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback