Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/158983
|
Title: | 多星系精密單點定位 - 整數週波未定值求解於控制測量之評估 Assessment of Multi-GNSS PPP-AR for Control Surveying |
Authors: | 王佑靖 Wang, Yu-Ching |
Contributors: | 甯方璽 Ning, Fang-Shii 王佑靖 Wang, Yu-Ching |
Keywords: | 精密單點定位 整數週波未定值求解 控制測量 Precise Point Positioning (PPP) Ambiguity Resolution (AR) Control Surveying |
Date: | 2025 |
Issue Date: | 2025-09-01 14:36:12 (UTC+8) |
Abstract: | 近年來,控制測量需求逐漸拓展至控制點稀疏以及通訊不易設置之區域,傳統需依賴基準站的相對定位方式在此類情況下面臨作業困難與佈設限制。精密單點定位(Precise Point Positioning, PPP)因其不需佈設基準站,具備高精度與高作業彈性,成為提升測量效率的重要選項。然而,傳統 PPP 模式需長時間觀測方能達成公分級精度,限制其於即短時應用之可行性。為克服此限制,PPP 整數週波未定值求解技術(PPP Ambiguity Resolution, PPP-AR)應運而生,透過整數週波未定值求解可顯著縮短收斂時間,提升短時間定位精度。同時,結合多星系觀測量增加可以有效改善幾何分布,有助進一步提升解算穩定性。當多星系的結合與 PPP-AR 技術整合後,可有效滿足山區與通訊設施不易設置地區之定位需求。 本研究使用多星系 PPP-AR 技術來評估地籍圖根點建置之應用潛力。研究首先利用 IGS 測站資料,模擬不同觀測時長與遮蔽環境(10°與30°截止角)。成果顯示,在短時段(0.5 至 2 小時)內具備明顯優勢,其水平方向定位精度可穩定控制於 2 公分內,較雙星系或實數解有顯著改善。接下來,進一步以花蓮縣卓溪鄉實測資料進行驗證,評估多星系 PPP-AR 在實際控制測量作業條件下之可行性。成果顯示,在不同觀測時長與環境條件下,多星系 PPP-AR 能有效提升定位精度與穩定性,其中於 2 小時觀測時長條件下,其水平方向定位精度可達 2.2 公分。這些分析皆指出,在控制點稀疏的山區以及通訊設置困難時,多星PPP-AR具備了地籍圖根建置之潛力。然而,在台灣,目前PPP-AR應用於控制測量的法規尚未明確定義,本研究之成果將可以成為未來法規在定義上之有用參考基礎。 In recent years, the demand for control surveys has expanded into areas with sparse control points and limited communication infrastructure. Traditional relative positioning methods that rely on reference stations face operational challenges and deployment constraints in such environments. Precise Point Positioning (PPP), which does not require the installation of local base stations, offers high positioning accuracy and operational flexibility, making it an effective solution for improving survey efficiency. However, conventional PPP requires long observation times to achieve centimeter-level accuracy, limiting its feasibility for short-term applications. To address this limitation, PPP Ambiguity Resolution (PPP-AR) techniques have been developed. By resolving integer ambiguities, PPP-AR significantly reduces convergence time and enhances positioning accuracy in shorter sessions. Additionally, incorporating multi-GNSS observations improves satellite geometry and further enhances the stability of position solutions. The integration of multi-GNSS and PPP-AR technologies thus presents a promising approach for positioning in mountainous regions and areas where communication infrastructure is difficult to establish. This study evaluates the applicability of multi-GNSS PPP-AR in the establishment of cadastral control points. Using IGS station data, we simulated positioning performance under different observation durations and elevation mask angles (10° and 30°). Results show that multi-GNSS PPP-AR offers clear advantages for short observation periods (0.5 to 2 hours), with horizontal positioning accuracy consistently within 2 centimeters—significantly better than dual-GNSS or float solutions. Further validation was conducted using field data collected in Zhuoxi Township, Hualien County, to assess feasibility under actual control survey conditions. The analysis indicates that multi-GNSS PPP-AR can effectively improve both positioning accuracy and stability, achieving a horizontal accuracy of 2.2 centimeters with a 2-hour observation duration. These findings suggest that multi-GNSS PPP-AR holds significant potential for cadastral control point densification in mountainous areas with sparse control networks and limited communication access. However, in Taiwan, the legal framework for applying PPP-AR in control surveys has yet to be clearly defined. The results of this study may serve as a valuable reference for future regulatory developments. |
Reference: | Bahadur, B., & Nohutcu, M. (2021). Impact of observation sampling rate on Multi-GNSS static PPP performance. Survey Review, 53(378), 206-215. Banville, S., Hassen, E., Lamothe, P., Farinaccio, J., Donahue, B., Mireault, Y., Goudarzi, M. A., Collins, P., Ghoddousi-Fard, R., & Kamali, O. (2021). Enabling ambiguity resolution in CSRS-PPP. NAVIGATION: Journal of the Institute of Navigation, 68(2), 433-451. Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780. Cai, C., & Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS solutions, 17, 223-236. Cai, C., Gao, Y., Pan, L., & Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56(1), 133-143. Chu, F.-Y., & Chen, Y.-W. (2023). Monitoring structural displacements on a wall with five-constellation precise point positioning: A position-constrained method and the performance analyses. Remote Sensing, 15(5), 1314. Denys, P., Liggett, A., Odolinski, R., Pearson, C., Stewart, D., & Winefield, R. (2017). Network RTK-New Zealand: A Summary of the Concepts, Methods, Limitations and Services in New Zealand. NZIS Positioning and Measurement. El-Mowafy, A. (2012). Precise real-time positioning using Network RTK. Global navigation satellite systems: signal, theory and applications, 7, 161-188. Erol, S., Alkan, R. M., Ozulu, İ. M., & Ilçi, V. (2021). Impact of different sampling rates on precise point positioning performance using online processing service. Geo-spatial information science, 24(2), 302-312. Ge, M., Gendt, G., Rothacher, M. a., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of geodesy, 82, 389-399. Geng, J., Meng, X., Dodson, A. H., Ge, M., & Teferle, F. N. (2010). Rapid re-convergences to ambiguity-fixed solutions in precise point positioning. Journal of geodesy, 84, 705-714. Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. (2010). Integer ambiguity resolution in precise point positioning: method comparison. Journal of geodesy, 84, 569-581. Geng, J., Teferle, F. N., Meng, X., & Dodson, A. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664-1673. Goad, C. C. (1974). A modified Hopfield tropospheric refraction correction model. Paper presented at the Fall Annual Meeting American Geophysical Union, 1974, International GNSS Service. (n.d.). Data & products overview. Retrieved December 14 from https://igs.org/data-products-overview/ Laurichesse, D., Mercier, F., Berthias, J. P., Broca, P., & Cerri, L. (2009). Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation, 56(2), 135-149. Leick, A. (2015). GPS satellite surveying. Wiley. Li, P., & Zhang, X. (2014). Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS solutions, 18, 461-471. Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., & Schuh, H. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of geodesy, 89(6), 607-635. Liu, Y., Ye, S., Song, W., Lou, Y., & Gu, S. (2017). Rapid PPP ambiguity resolution using GPS+ GLONASS observations. Journal of geodesy, 91, 441-455. Martín, A., Anquela, A., Capilla, R., & Berné, J. (2011). PPP technique analysis based on time convergence, repeatability, IGS products, different software processing, and GPS+ GLONASS constellation. Journal of Surveying Engineering, 137(3), 99-108. Píriz, R., Calle, D., Mozo, A., Navarro, P., Rodríguez, D., & Tobías, G. (2009). Orbits and clocks for GLONASS precise-point-positioning. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009), Teunissen, P. J. (1998). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of geodesy, 72, 606-612. Teunissen, P. J., & Montenbruck, O. (2017). Springer handbook of global navigation satellite systems (Vol. 10). Springer. Teunnissen, P. (1995). The least-square ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J. Geodesy, 70(1), 65-82. Wang, G., Blume, F., Meertens, C., Ibanez, P., & Schulze, M. (2012). Performance of high-rate kinematic GPS during strong shaking: Observations from shake table tests and the 2010 Chile earthquake. Journal of Geodetic Science, 2(1), 15-30. Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., & Yanagidani, T. (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of geodesy, 87, 361-372. Yang, M., Hsu, H.-C., & Chu, F.-Y. (2024). Taiwan Online Precise Point Positioning Service: Methodology and Test Results. Journal of Surveying Engineering, 150(3), 04024007. Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017. https://doi.org/10.1029/96jb03860 |
Description: | 碩士 國立政治大學 地政學系 112257030 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0112257030 |
Data Type: | thesis |
Appears in Collections: | [地政學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
703001.pdf | | 3299Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|