English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118524/149574 (79%)
Visitors : 79054844      Online Users : 305
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/158573
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/158573


    Title: 以RFID/NFC為基底的付款服務品質之研究
    A Study on the Service Quality of RFID/NFC-Based Payment Systems
    Authors: 林暐勳
    Lin, Wei-Hsun
    Contributors: 杜雨儒
    洪智鐸

    Tu, Yu-Ju
    Hong, Chih-Duo

    林暐勳
    Lin, Wei-Hsun
    Keywords: 近距離無線通訊(NFC)
    RFID
    神經網路
    訊號理論
    行動支付
    科技接受模型(TAM)
    安全性
    信任
    隱私
    文化維度理論
    Near-Field Communication (NFC)
    RFID
    Neural Network
    Signaling Theory
    Mobile Payment
    Technology Acceptance Model (TAM)
    Security
    Trust
    Privacy
    Hofstede's Cultural Dimensions Theory
    Date: 2025
    Issue Date: 2025-08-04 14:26:36 (UTC+8)
    Abstract: 近距離無線通訊(NFC)廣泛應用於行動支付與交通卡系統中,其使用者滿意度往往取決於技術以外的感知因素。基於訊號理論與 Hofstede 文化維度理論,本研究探討不同地區使用者如何透過感知有用性(PU)、感知易用性(PEOU)、安全性、信任與隱私等服務訊號,評估 NFC 應用品質。我們蒐集多款交通卡應用於 Google Play 上的使用者評論,透過關鍵字標註與神經網路進行多類別分類,並統計各地區五項因素的分佈與情感傾向。研究發現,PU 為全球普遍重視因素,而其他訊號則受文化差異影響,呈現地區性關注差異,顯示文化背景深刻形塑使用者對服務品質的判斷。此結果有助於理解不同市場中影響技術接受的文化脈絡,提供服務優化建議。
    Near-field communication (NFC) is widely utilized in mobile payment and transportation card systems, with user satisfaction often influenced by perceived attributes beyond the technology itself. Based on Signaling Theory and Hofstede's cultural dimensions framework, this study examines how users in different regions evaluate NFC application quality through service signals, including Perceived Usefulness (PU), Perceived Ease of Use (PEOU), Security, Trust, and Privacy. User reviews from various transportation card applications on Google Play were collected, annotated with relevant keywords, and analyzed using a neural network-based multi-class classification model. Statistical analyses revealed that while PU is universally prioritized, other signals vary significantly by region due to cultural differences, highlighting how cultural contexts shape user perceptions of service quality. These findings provide insights into regional factors influencing technology adoption and offer guidance for optimizing NFC application services across diverse markets.
    Reference: 1. Asadbeigi, S., Abdollahi, A., & Shokohyar, S. (2016). Typical presentation to evaluate NFC technology in electronic mobile payments. Marketing and Branding Research, 3, 109-118.
    2. Aris, F., Ismail, K., & Mohezar, S. (2022). Fostering mobile payment adoption: A case of Near Field Communication (NFC). International Journal of Business and Society, 23(3), 1535-1553.
    3. Anderson, C. L., & Agarwal, R. (2010). Practicing safe computing: A multimethod empirical examination of home computer user security behavioral intentions. MIS quarterly, 613-643.
    4. Almaiah, M. A., Al-Rahmi, A., Alturise, F., Hassan, L., Lutfi, A., Alrawad, M., ... & Aldhyani, T. H. (2022). Investigating the effect of perceived security, perceived trust, and information quality on mobile payment usage through near-field communication (NFC) in Saudi Arabia. Electronics, 11(23), 3926.
    5. Adjerid, I., Peer, E., & Acquisti, A. (2018). Beyond the privacy paradox: objective versus relative risk in privacy decision making. Mis Quarterly, 42(2), 465-488.
    6. Abu-Salih, B. and Alotaibi, S. (2023). Knowledge graph construction for social customer advocacy in online customer engagement. Technologies, 11(5), 123.
    7. Bandinelli, R., Fani, V., & Rinaldi, R. (2017). Customer acceptance of NFC technology: An exploratory study in the wine industry. International Journal of RF Technologies, 8(1-2), 1-16.
    8. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. Mis Quarterly, 25(3), 351.
    9. Beaudry, A., & Pinsonneault, A. (2010). The other side of acceptance: Studying the direct and indirect effects of emotions on information technology use. MIS quarterly, 689-710.
    10. Bélanger, F., & Crossler, R. E. (2011). Privacy in the digital age: a review of information privacy research in information systems. MIS quarterly, 1017-1041.
    11. Bauer, K., von Zahn, M., & Hinz, O. (2023). Expl (AI) ned: The impact of explainable artificial intelligence on users’ information processing. Information systems research, 34(4), 1582-1602.
    12. Balapour, A., Nikkhah, H. R., & Sabherwal, R. (2020). Mobile application security: Role of perceived privacy as the predictor of security perceptions. International Journal of Information Management, 52, 102063.
    13. Ceipidor, U. B., Medaglia, C. M., Opromolla, A., Volpi, V., Moroni, A., & Sposato, S. (2012, March). A survey about user experience improvement in mobile proximity payment. In 2012, 4th International Workshop on Near Field Communication (pp. 51-56). IEEE.
    14. Chen, P., Lee, J., Huang, S., & Lin, C. (2020). A study on consumers usage behavior of the banks mobile payment apps in Taiwan. Business and Economics Research Journal, 11(3), 793-805.
    15. Cichy, P., Salge, T., & Kohli, R. (2021). Privacy concerns and data sharing in the internet of things: mixed methods evidence from connected cars. Mis Quarterly, 45(4), 1863-1892.
    16. Chen, N. (2024). Exploring the development and application of LSTM variants. Applied and Computational Engineering, 53, 103-107.
    17. Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-CNNs. Transactions of the association for computational linguistics, 4, 357-370.
    18. Chin, W. W., Johnson, N., & Schwarz, A. (2008). A fast form approach to measuring technology acceptance and other constructs. MIS quarterly, 687-703.
    19. Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5.
    20. Dill, S. F., Calongne, C., Howard, C., & Beazley, D. (2013). Social media intelligence in the exploration of national cultural dimensions for online social communities. In Strategic Adoption of Technological Innovations, 70-81. IGI Global.
    21. Everard, A. and McCoy, S. (2010). Effect of presentation flaw attribution on website quality, trust, and abandonment. Australasian Journal of Information Systems, 16(2).
    22. Flavián, C., Guinaliu, M., & Lu, Y. (2020). Mobile payments adoption–introducing mindfulness to better understand consumer behavior. International Journal of Bank Marketing, 38(7), 1575-1599.
    23. Fei, L., Ye, J., & Jun, L. X. (2023, October). Application of Visual Availability Theory and Visual Perception in Software. In 3rd International Conference on Management Science and Software Engineering (ICMSSE 2023), 230-240. Atlantis Press.
    24. Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., & Lim, K. H. (2014). Trust, satisfaction, and online repurchase intention. MIS quarterly, 38(2), 407-A9.
    25. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474.
    26. Fox, G., Clohessy, T., van der Werff, L., Rosati, P., & Lynn, T. (2021). Exploring the competing influences of privacy concerns and positive beliefs on citizen acceptance of contact tracing mobile applications. Computers in Human Behavior, 121, 106806.
    27. Guo, T., Bardhan, I. R., Ding, Y., & Zhang, S. (2024). An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research.
    28. Gao, G., Greenwood, B., Agarwal, R., & McCullough, J. (2015). Vocal minority and silent majority: how do online ratings reflect population perceptions of quality? Mis Quarterly, 39(3), 565-590.
    29. Hess, T., McNab, A., & Basoglu, K. (2014). Reliability generalization of perceived ease of use, perceived usefulness, and behavioral intentions. Mis Quarterly, 38(1), 1-28.
    30. Hu, P., Chen, H., & Fang, X. (2017). Examining the mediating roles of cognitive load and performance outcomes in user satisfaction with a website: a field quasi-experiment. Mis Quarterly, 41(3), 975-987.
    31. Havakhor, T., Sabherwal, S., Sabherwal, R., & Steelman, Z. R. (2022). Evaluating Information Technology Investments: Insights from Executives' Trades. Mis Quarterly, 46(2).
    32. Hajli, N., & Lin, X. (2016). Exploring the security of information sharing on social networking sites: The role of perceived control of information. Journal of Business Ethics, 133, 111-123.
    33. Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: software of the mind: intercultural cooperation and its importance for survival. 3rd ed. McGraw-Hill.
    34. Johnston, J. and Warkentin, M. (2010). Fear appeals and information security behaviors: an empirical study. Mis Quarterly, 34(3), 549.
    35. Jabr, W., & Rahman, M. S. (2022). Online Reviews and Information Overload: The Role of Selective, Parsimonious, and Concordant Top Reviews. MIS quarterly, 46(3).
    36. Jenkner, C. S., Ravi, N., Gabel, M., & Vogt, J. C. (2022). Trust in data‐requesting organizations—A quantitative analysis on cultural antecedents and individual‐level perceptions. The Electronic Journal of Information Systems in Developing Countries, 88(4), e12208.
    37. Kuo, T. S., Huang, K. C., Nguyen, T. Q., & Nguyen, P. H. (2019). Adoption of mobile applications for identifying tourism destinations by travellers: an integrative approach. Journal of Business Economics and Management, 20(5), 860-877.
    38. Kim, S., Yang, T., & Kim, D. (2013). Critical Success Factors of Convergency Technology Commercialization: Near Field Communication [Leading Edge]. IEEE Technology and Society Magazine, 32(3), 21-28.
    39. Kim, H., & Lee, S. W. (2024). Investigating the effects of generative-AI responses on user experience after AI hallucination. In Proceedings of the MBP 2024 Tokyo International Conference on Management & Business Practices, 92-101.
    40. Kumar, A., Narapareddy, V. T., Srikanth, V. A., Malapati, A., & Neti, L. B. M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. Ieee Access, 8, 6388-6397.
    41. Kim, B. R., Srinivasan, K., Kong, S. H., Kim, J. H., Shin, C. S., & Ram, S. (2023). ROLEX: A Novel Method for Interpretable Machine Learning Using Robust Local Explanations. MIS Quarterly, 47(3).
    42. Kokkodis, M., Adamopoulos, P., & Ransbotham, S. (2023). Reputation Spillover from Agencies on Online Platforms: Evidence from the Entertainment Industry. MIS Quarterly, 47(2), 733-770.
    43. Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS quarterly, 941-960.
    44. Leong, L. Y., Hew, T. S., Tan, G. W. H., & Ooi, K. B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620.
    45. Lee, Y., Coyle, J. R., & Chen, A. N. (2021). Improving intention to back projects with effective designs of progress presentation in crowdfunding campaign sites. Decision Support Systems, 147, 113573.
    46. Luo, A., Zhong, L., Wang, J., Wang, Y., Li, S., & Tai, W. (2024). Short-term stock correlation forecasting based on CNN-BiLSTM enhanced by attention mechanism. IEEE Access.
    47. Luo, J., Ba, S., & Zhang, H. (2012). The effectiveness of online shopping characteristics and well-designed websites on satisfaction. Mis Quarterly, 1131-1144.
    48. Li, Y., Kobsa, A., Knijnenburg, B. P., & Nguyen, M. C. (2017). Cross-cultural privacy prediction. Proceedings on Privacy Enhancing Technologies, 2017(2), 113–132.
    49. Madlmayr, G., Langer, J., Kantner, C., & Scharinger, J. (2008). NFC devices: Security and privacy. In 2008, Third International Conference on Availability, Reliability and Security, 642-647.
    50. Malarvizhi, C. A., Al Mamun, A., Jayashree, S., Naznen, F., & Abir, T. (2022). Predicting the intention and adoption of near field communication mobile payment. Frontiers in Psychology, 13, 870793.
    51. Mozafari, N., Schwede, M., Hammerschmidt, M., & Weiger, W. (2022). Users taking the blame? how service failure, recovery, and robot design affect user attributions and retention. Electronic Markets, 32(4), 2491-2505.
    52. Ma, T., Hu, Y., Lu, Y., & Bhattacharyya, S. (2024). Customer engagement prediction on social media: A graph neural network method. Information Systems Research.
    53. Model, A. I. (2003). Trust and tam in online shopping: An integrated model1. MIS Quarterly, 27(1), 51-90.
    54. Ng-Kruelle, G., Swatman, P. A., Hampe, J. F., & Rebne, D. S. (2006). Biometrics and e-Identity (e-Passport) in the European Union: End-user perspectives on the adoption of a controversial innovation. Journal of Theoretical and Applied Electronic Commerce Research, 1(2), 12-35.
    55. Ozdenizci, B., Alsadi, M., Ok, K., & Coskun, V. (2013). Classification of NFC applications in diverse service domains. International Journal of Computer and Communication Engineering, 2(5), 614.
    56. Öztürk, A., Bilgihan, A., Salehi-Esfahani, S., & Hua, N. (2017). Understanding the mobile payment technology acceptance based on valence theory. International Journal of Contemporary Hospitality Management, 29(8), 2027-2049.
    57. Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13-25.
    58. Putra, E. P., Fifilia, F., & Juwitasary, H. (2018). Trend of NFC Technology for payment transaction. TELKOMNIKA (Telecommunication Computing Electronics and Control), 16(2), 795-802.
    59. Pham, T. T. T., & Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in society, 43, 159-172.
    60. Preko, A. (2021). Safety and security concerns at the beach: Views of migrant visitors in Ghana. Tourism and Hospitality Research, 21(1), 73-85.
    61. Pavlou, P. A. (2011). State of the information privacy literature: Where are we now and where should we go?. MIS quarterly, 977-988.
    62. Qin, F., Le, W., Zhang, M., & Deng, Y. (2022). How perceived attributes of livestreaming commerce influence customer engagement: a social support perspective. Journal of Service Theory and Practice, 33(1), 1-22.
    63. Reuver, M. and Ondruš, J. (2017). When technological superiority is not enough: the struggle to impose the SIM card as the NFC secure element for mobile payment platforms. Telecommunications Policy, 41(4), 253-262.
    64. Ryu, S., Kim, K., & Hahn, J. (2022). Crowdfunding success effects on financing outcomes for startups: a signaling theory perspective. Mis Quarterly, 47(3), 1271-1302.
    65. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2018). NFC payments–gaps between user perception and reality. Privacy and Identity Management. The Smart Revolution: 12th IFIP WG 9.2, 9.5, 9.6/11.7, 11.6/SIG 9.2. 2 International Summer School, Ispra, Italy, September 4-8, 2017, Revised Selected Papers 12, 346-353.
    66. Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & marketing, 32(8), 860-873.
    67. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2018). Changed the cup, not the saucer–NFC payments in supermarkets. In HCI International 2018–Posters' Extended Abstracts: 20th International Conference, HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part III 20 (pp. 309-313). Springer International Publishing.
    68. Sun, S., Zhang, F., Liao, K., & Chang, V. (2021). Determine factors of NFC mobile payment continuous adoption in shopping malls. International Journal of Business Intelligence Research, 12(2), 1-20.
    69. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2019). How to Improve the Interaction Design of NFC Payment Terminals? In Human-Computer Interaction–INTERACT 2019: 17th IFIP TC 13 International Conference, Paphos, Cyprus, September 2–6, 2019, Proceedings, Part II 17 (pp. 55-68). Springer International Publishing.
    70. Sattarivand, M., Babaie, S., & Rahmani, A. M. (2023). A survey on NFC payment: Applications, research challenges, and future directions. Journal of Information Systems and Telecommunication (JIST), 3(43), 232.
    71. Spears, J. L., & Barki, H. (2010). User participation in information systems security risk management. MIS quarterly, 503-522.
    72. Sutanto, J., Palme, E., Tan, C. H., & Phang, C. W. (2013). Addressing the personalization-privacy paradox: An empirical assessment from a field experiment on smartphone users. MIS quarterly, 1141-1164.
    73. Savoli, A., Barki, H., & Paré, G. (2020). Examining how chronically ill patients’ reactions to and effective use of information technology can influence how well they self-manage their illness. Mis Quarterly, 44(1), 351-389.
    74. Sutcliffe, A. (2017). Designing user interfaces in emotionally-sensitive applications. In Human-Computer Interaction–INTERACT 2017: 16th IFIP TC 13 International Conference, Mumbai, India, September 25–29, 2017, Proceedings, Part III 16, 404-422. Springer International Publishing.
    75. Shin, S., & Lee, W. J. (2014). The effects of technology readiness and technology acceptance on NFC mobile payment services in Korea. Journal of Applied Business Research, 30(6), 1615.
    76. Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform (Doctoral dissertation, Petra Christian University).
    77. Sanyal, P., Menon, N., & Siponen, M. (2021). An Empirical Examination of the Economics of Mobile Application Security. MIS Quarterly, 45(4).
    78. Tian, Z., Shi, Z., & Cheng, Q. (2021). Examining the antecedents and consequences of mobile travel app engagement. Plos One, 16(3), e0248460.
    79. Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075.
    80. Toktarova, A., Abushakhma, A., Adylbekova, E., Manapova, A., Kaldarova, B., Atayev, Y., ... & Aidarkhanova, A. (2023). Offensive language identification in low resource languages using bidirectional long-short-term memory network. International Journal of Advanced Computer Science and Applications, 14(6).
    81. Tu, Y. J., & Piramuthu, S. (2008). Reducing false reads in RFID-embedded supply chains. Journal of theoretical and applied electronic commerce research, 3(2), 60-70.
    82. Tu, Y. J., Zhou, W., & Piramuthu, S. (2009). Identifying RFID-embedded objects in pervasive healthcare applications. Decision Support Systems, 46(2), 586-593.
    83. Tu, Y. J., & Piramuthu, S. (2010). A decision-support model for filtering RFID read data in supply chains. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 268-273.
    84. Tu, Y., & Piramuthu, S. (2017). Lightweight non-distance-bounding means to address RFID relay attacks. Decision Support Systems, 102, 12-21.
    85. Tu, Y. J., Zhou, W., & Piramuthu, S. (2018). A novel means to address RFID tag/item separation in supply chains. Decision Support Systems, 115, 13-23.
    86. Tu, Y. J., & Piramuthu, S. (2020). On addressing RFID/NFC-based relay attacks: An overview. Decision Support Systems, 129, 113194.
    87. Tu, Y. J., Zhou, W., & Piramuthu, S. (2021). Critical risk considerations in auto-ID security: Barcode vs. RFID. Decision Support Systems, 142, 113471.
    88. Tu, Y. J., Kapoor, G., & Piramuthu, S. (2022). On Group Ownership Delegate Protocol for RFID Systems. Information Systems Frontiers, 24(5), 1577-1584.
    89. Tu, Y. J., & Piramuthu, S. (2022). Models to address RFID-based ticket-switching in retailing. Decision Support Systems, 153, 113666.
    90. Tu, Y. J., & Piramuthu, S. (2024). Ethical consumerism, supply chains, and deceptions with RFID-based systems. Information & Management, 61(6), 104016.
    91. Vishwakarma, P., Tripathy, A., & Vemuru, S. (2018). The fact-finding security examination in NFC-enabled mobile payment system. International Journal of Electrical and Computer Engineering (Ijece), 8(3), 1774.
    92. Venkatesh, V. and Morris, M. (2000). Why don't men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. Mis Quarterly, 24(1), 115.
    93. Vance, A., Eargle, D., Eggett, D., Straub, D., & Ouimet, K. (2022). Do security fear appeals work when they interrupt tasks? a multi-method examination of password strength. Mis Quarterly, 45(3), 1721-1738.
    94. Vance, A., Jenkins, J., Anderson, B., Bjornn, D., & Kirwan, C. (2018). Tuning out security warnings. Mis Quarterly, 42(2), 355-380.
    95. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
    96. Van den Bergh, J., & Coninx, K. (2014). CASSIS: a modeling language for customizable user interface designs. In Human-Centered Software Engineering: 5th IFIP WG 13.2 International Conference, HCSE 2014, Paderborn, Germany, September 16-18, 2014. Proceedings 5, 243-250. Springer Berlin Heidelberg.
    97. Van Doorn, E., Horváth, I., & Rusák, Z. (2017). Information engineering for developing and testing coherent, integrated and context-dependent user interfaces. Cognition, Technology & Work, 19, 375-397. Rendell, A., Adam, M., & Eidels, A. (2019). Towards understanding the influence of nature imagery in user Interface design: A review of the literature.
    98. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS quarterly, 695-704.
    99. Willison, R. and Warkentin, M. (2013). Beyond deterrence: an expanded view of employee computer abuse. Mis Quarterly, 37(1), 1-20.
    100. Wells, J. D., Parboteeah, V., & Valacich, J. S. (2011). Online impulse buying: understanding the interplay between consumer impulsiveness and website quality. Journal of the Association for Information Systems, 12(1), 3.
    101. Wells, J. D., Valacich, J. S., & Hess, T. J. (2011). What signal are you sending? How website quality influences perceptions of product quality and purchase intentions. MIS quarterly, 373-396.
    102. Wash, R., & Rader, E. (2015). Too much knowledge? security beliefs and protective behaviors among united states internet users. In Eleventh Symposium On Usable Privacy and Security (SOUPS 2015), 309-325.
    103. Yin, D., Bond, S., & Zhang, H. (2014). Anxious or angry? effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539-560.
    104. Yalcin, G., Lim, S., Puntoni, S., & Osselaer, S. (2022). Thumbs up or down: consumer reactions to decisions by algorithms versus humans. Journal of Marketing Research, 59(4), 696-717.
    105. Yuan, Y., Wang, W., Wen, G., Zheng, Z., & Zhuang, Z. (2023). Sentiment Analysis of Chinese Product Reviews Based on Fusion of DUAL-Channel BiLSTM and Self-Attention. Future Internet, 15(11), 364.
    106. Yadav, V., & Bethard, S. (2019). A survey on recent advances in named entity recognition from deep learning models. arXiv preprint arXiv:1910.11470.
    107. Zhao, H., Anong, S., & Zhang, L. (2019). Understanding the impact of financial incentives on NFC mobile payment adoption. The International Journal of Bank Marketing, 37(5), 1296-1312.
    108. Zhou, J., Kishore, R., Amo, L., & Ye, C. (2022). Description and Demonstration Signals as Complements and Substitutes in an Online Market for Mental Health Care. MIS Quarterly, 46(4).
    109. Zhou, W., Tu, Y. J., & Piramuthu, S. (2009). RFID-enabled item-level retail pricing. Decision Support Systems, 48(1), 169-179.
    110. Zhang, X., & Yang, H. (2019). Impact of cross-culture on behavioral information security. Journal of Integrated Design and Process Science, 22(2), 63-80.
    Description: 碩士
    國立政治大學
    資訊管理學系
    112356024
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112356024
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    602401.pdf1481KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback