Reference: | 1. Asadbeigi, S., Abdollahi, A., & Shokohyar, S. (2016). Typical presentation to evaluate NFC technology in electronic mobile payments. Marketing and Branding Research, 3, 109-118. 2. Aris, F., Ismail, K., & Mohezar, S. (2022). Fostering mobile payment adoption: A case of Near Field Communication (NFC). International Journal of Business and Society, 23(3), 1535-1553. 3. Anderson, C. L., & Agarwal, R. (2010). Practicing safe computing: A multimethod empirical examination of home computer user security behavioral intentions. MIS quarterly, 613-643. 4. Almaiah, M. A., Al-Rahmi, A., Alturise, F., Hassan, L., Lutfi, A., Alrawad, M., ... & Aldhyani, T. H. (2022). Investigating the effect of perceived security, perceived trust, and information quality on mobile payment usage through near-field communication (NFC) in Saudi Arabia. Electronics, 11(23), 3926. 5. Adjerid, I., Peer, E., & Acquisti, A. (2018). Beyond the privacy paradox: objective versus relative risk in privacy decision making. Mis Quarterly, 42(2), 465-488. 6. Abu-Salih, B. and Alotaibi, S. (2023). Knowledge graph construction for social customer advocacy in online customer engagement. Technologies, 11(5), 123. 7. Bandinelli, R., Fani, V., & Rinaldi, R. (2017). Customer acceptance of NFC technology: An exploratory study in the wine industry. International Journal of RF Technologies, 8(1-2), 1-16. 8. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. Mis Quarterly, 25(3), 351. 9. Beaudry, A., & Pinsonneault, A. (2010). The other side of acceptance: Studying the direct and indirect effects of emotions on information technology use. MIS quarterly, 689-710. 10. Bélanger, F., & Crossler, R. E. (2011). Privacy in the digital age: a review of information privacy research in information systems. MIS quarterly, 1017-1041. 11. Bauer, K., von Zahn, M., & Hinz, O. (2023). Expl (AI) ned: The impact of explainable artificial intelligence on users’ information processing. Information systems research, 34(4), 1582-1602. 12. Balapour, A., Nikkhah, H. R., & Sabherwal, R. (2020). Mobile application security: Role of perceived privacy as the predictor of security perceptions. International Journal of Information Management, 52, 102063. 13. Ceipidor, U. B., Medaglia, C. M., Opromolla, A., Volpi, V., Moroni, A., & Sposato, S. (2012, March). A survey about user experience improvement in mobile proximity payment. In 2012, 4th International Workshop on Near Field Communication (pp. 51-56). IEEE. 14. Chen, P., Lee, J., Huang, S., & Lin, C. (2020). A study on consumers usage behavior of the banks mobile payment apps in Taiwan. Business and Economics Research Journal, 11(3), 793-805. 15. Cichy, P., Salge, T., & Kohli, R. (2021). Privacy concerns and data sharing in the internet of things: mixed methods evidence from connected cars. Mis Quarterly, 45(4), 1863-1892. 16. Chen, N. (2024). Exploring the development and application of LSTM variants. Applied and Computational Engineering, 53, 103-107. 17. Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-CNNs. Transactions of the association for computational linguistics, 4, 357-370. 18. Chin, W. W., Johnson, N., & Schwarz, A. (2008). A fast form approach to measuring technology acceptance and other constructs. MIS quarterly, 687-703. 19. Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5. 20. Dill, S. F., Calongne, C., Howard, C., & Beazley, D. (2013). Social media intelligence in the exploration of national cultural dimensions for online social communities. In Strategic Adoption of Technological Innovations, 70-81. IGI Global. 21. Everard, A. and McCoy, S. (2010). Effect of presentation flaw attribution on website quality, trust, and abandonment. Australasian Journal of Information Systems, 16(2). 22. Flavián, C., Guinaliu, M., & Lu, Y. (2020). Mobile payments adoption–introducing mindfulness to better understand consumer behavior. International Journal of Bank Marketing, 38(7), 1575-1599. 23. Fei, L., Ye, J., & Jun, L. X. (2023, October). Application of Visual Availability Theory and Visual Perception in Software. In 3rd International Conference on Management Science and Software Engineering (ICMSSE 2023), 230-240. Atlantis Press. 24. Fang, Y., Qureshi, I., Sun, H., McCole, P., Ramsey, E., & Lim, K. H. (2014). Trust, satisfaction, and online repurchase intention. MIS quarterly, 38(2), 407-A9. 25. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International journal of human-computer studies, 59(4), 451-474. 26. Fox, G., Clohessy, T., van der Werff, L., Rosati, P., & Lynn, T. (2021). Exploring the competing influences of privacy concerns and positive beliefs on citizen acceptance of contact tracing mobile applications. Computers in Human Behavior, 121, 106806. 27. Guo, T., Bardhan, I. R., Ding, Y., & Zhang, S. (2024). An Explainable Artificial Intelligence Approach Using Graph Learning to Predict Intensive Care Unit Length of Stay. Information Systems Research. 28. Gao, G., Greenwood, B., Agarwal, R., & McCullough, J. (2015). Vocal minority and silent majority: how do online ratings reflect population perceptions of quality? Mis Quarterly, 39(3), 565-590. 29. Hess, T., McNab, A., & Basoglu, K. (2014). Reliability generalization of perceived ease of use, perceived usefulness, and behavioral intentions. Mis Quarterly, 38(1), 1-28. 30. Hu, P., Chen, H., & Fang, X. (2017). Examining the mediating roles of cognitive load and performance outcomes in user satisfaction with a website: a field quasi-experiment. Mis Quarterly, 41(3), 975-987. 31. Havakhor, T., Sabherwal, S., Sabherwal, R., & Steelman, Z. R. (2022). Evaluating Information Technology Investments: Insights from Executives' Trades. Mis Quarterly, 46(2). 32. Hajli, N., & Lin, X. (2016). Exploring the security of information sharing on social networking sites: The role of perceived control of information. Journal of Business Ethics, 133, 111-123. 33. Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). Cultures and organizations: software of the mind: intercultural cooperation and its importance for survival. 3rd ed. McGraw-Hill. 34. Johnston, J. and Warkentin, M. (2010). Fear appeals and information security behaviors: an empirical study. Mis Quarterly, 34(3), 549. 35. Jabr, W., & Rahman, M. S. (2022). Online Reviews and Information Overload: The Role of Selective, Parsimonious, and Concordant Top Reviews. MIS quarterly, 46(3). 36. Jenkner, C. S., Ravi, N., Gabel, M., & Vogt, J. C. (2022). Trust in data‐requesting organizations—A quantitative analysis on cultural antecedents and individual‐level perceptions. The Electronic Journal of Information Systems in Developing Countries, 88(4), e12208. 37. Kuo, T. S., Huang, K. C., Nguyen, T. Q., & Nguyen, P. H. (2019). Adoption of mobile applications for identifying tourism destinations by travellers: an integrative approach. Journal of Business Economics and Management, 20(5), 860-877. 38. Kim, S., Yang, T., & Kim, D. (2013). Critical Success Factors of Convergency Technology Commercialization: Near Field Communication [Leading Edge]. IEEE Technology and Society Magazine, 32(3), 21-28. 39. Kim, H., & Lee, S. W. (2024). Investigating the effects of generative-AI responses on user experience after AI hallucination. In Proceedings of the MBP 2024 Tokyo International Conference on Management & Business Practices, 92-101. 40. Kumar, A., Narapareddy, V. T., Srikanth, V. A., Malapati, A., & Neti, L. B. M. (2020). Sarcasm detection using multi-head attention based bidirectional LSTM. Ieee Access, 8, 6388-6397. 41. Kim, B. R., Srinivasan, K., Kong, S. H., Kim, J. H., Shin, C. S., & Ram, S. (2023). ROLEX: A Novel Method for Interpretable Machine Learning Using Robust Local Explanations. MIS Quarterly, 47(3). 42. Kokkodis, M., Adamopoulos, P., & Ransbotham, S. (2023). Reputation Spillover from Agencies on Online Platforms: Evidence from the Entertainment Industry. MIS Quarterly, 47(2), 733-770. 43. Komiak, S. Y., & Benbasat, I. (2006). The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS quarterly, 941-960. 44. Leong, L. Y., Hew, T. S., Tan, G. W. H., & Ooi, K. B. (2013). Predicting the determinants of the NFC-enabled mobile credit card acceptance: A neural networks approach. Expert Systems with Applications, 40(14), 5604-5620. 45. Lee, Y., Coyle, J. R., & Chen, A. N. (2021). Improving intention to back projects with effective designs of progress presentation in crowdfunding campaign sites. Decision Support Systems, 147, 113573. 46. Luo, A., Zhong, L., Wang, J., Wang, Y., Li, S., & Tai, W. (2024). Short-term stock correlation forecasting based on CNN-BiLSTM enhanced by attention mechanism. IEEE Access. 47. Luo, J., Ba, S., & Zhang, H. (2012). The effectiveness of online shopping characteristics and well-designed websites on satisfaction. Mis Quarterly, 1131-1144. 48. Li, Y., Kobsa, A., Knijnenburg, B. P., & Nguyen, M. C. (2017). Cross-cultural privacy prediction. Proceedings on Privacy Enhancing Technologies, 2017(2), 113–132. 49. Madlmayr, G., Langer, J., Kantner, C., & Scharinger, J. (2008). NFC devices: Security and privacy. In 2008, Third International Conference on Availability, Reliability and Security, 642-647. 50. Malarvizhi, C. A., Al Mamun, A., Jayashree, S., Naznen, F., & Abir, T. (2022). Predicting the intention and adoption of near field communication mobile payment. Frontiers in Psychology, 13, 870793. 51. Mozafari, N., Schwede, M., Hammerschmidt, M., & Weiger, W. (2022). Users taking the blame? how service failure, recovery, and robot design affect user attributions and retention. Electronic Markets, 32(4), 2491-2505. 52. Ma, T., Hu, Y., Lu, Y., & Bhattacharyya, S. (2024). Customer engagement prediction on social media: A graph neural network method. Information Systems Research. 53. Model, A. I. (2003). Trust and tam in online shopping: An integrated model1. MIS Quarterly, 27(1), 51-90. 54. Ng-Kruelle, G., Swatman, P. A., Hampe, J. F., & Rebne, D. S. (2006). Biometrics and e-Identity (e-Passport) in the European Union: End-user perspectives on the adoption of a controversial innovation. Journal of Theoretical and Applied Electronic Commerce Research, 1(2), 12-35. 55. Ozdenizci, B., Alsadi, M., Ok, K., & Coskun, V. (2013). Classification of NFC applications in diverse service domains. International Journal of Computer and Communication Engineering, 2(5), 614. 56. Öztürk, A., Bilgihan, A., Salehi-Esfahani, S., & Hua, N. (2017). Understanding the mobile payment technology acceptance based on valence theory. International Journal of Contemporary Hospitality Management, 29(8), 2027-2049. 57. Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13-25. 58. Putra, E. P., Fifilia, F., & Juwitasary, H. (2018). Trend of NFC Technology for payment transaction. TELKOMNIKA (Telecommunication Computing Electronics and Control), 16(2), 795-802. 59. Pham, T. T. T., & Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in society, 43, 159-172. 60. Preko, A. (2021). Safety and security concerns at the beach: Views of migrant visitors in Ghana. Tourism and Hospitality Research, 21(1), 73-85. 61. Pavlou, P. A. (2011). State of the information privacy literature: Where are we now and where should we go?. MIS quarterly, 977-988. 62. Qin, F., Le, W., Zhang, M., & Deng, Y. (2022). How perceived attributes of livestreaming commerce influence customer engagement: a social support perspective. Journal of Service Theory and Practice, 33(1), 1-22. 63. Reuver, M. and Ondruš, J. (2017). When technological superiority is not enough: the struggle to impose the SIM card as the NFC secure element for mobile payment platforms. Telecommunications Policy, 41(4), 253-262. 64. Ryu, S., Kim, K., & Hahn, J. (2022). Crowdfunding success effects on financing outcomes for startups: a signaling theory perspective. Mis Quarterly, 47(3), 1271-1302. 65. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2018). NFC payments–gaps between user perception and reality. Privacy and Identity Management. The Smart Revolution: 12th IFIP WG 9.2, 9.5, 9.6/11.7, 11.6/SIG 9.2. 2 International Summer School, Ispra, Italy, September 4-8, 2017, Revised Selected Papers 12, 346-353. 66. Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: extending UTAUT with innovativeness, risk, and trust. Psychology & marketing, 32(8), 860-873. 67. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2018). Changed the cup, not the saucer–NFC payments in supermarkets. In HCI International 2018–Posters' Extended Abstracts: 20th International Conference, HCI International 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part III 20 (pp. 309-313). Springer International Publishing. 68. Sun, S., Zhang, F., Liao, K., & Chang, V. (2021). Determine factors of NFC mobile payment continuous adoption in shopping malls. International Journal of Business Intelligence Research, 12(2), 1-20. 69. Santhana Kumar, P., Bechinie, M., & Tscheligi, M. (2019). How to Improve the Interaction Design of NFC Payment Terminals? In Human-Computer Interaction–INTERACT 2019: 17th IFIP TC 13 International Conference, Paphos, Cyprus, September 2–6, 2019, Proceedings, Part II 17 (pp. 55-68). Springer International Publishing. 70. Sattarivand, M., Babaie, S., & Rahmani, A. M. (2023). A survey on NFC payment: Applications, research challenges, and future directions. Journal of Information Systems and Telecommunication (JIST), 3(43), 232. 71. Spears, J. L., & Barki, H. (2010). User participation in information systems security risk management. MIS quarterly, 503-522. 72. Sutanto, J., Palme, E., Tan, C. H., & Phang, C. W. (2013). Addressing the personalization-privacy paradox: An empirical assessment from a field experiment on smartphone users. MIS quarterly, 1141-1164. 73. Savoli, A., Barki, H., & Paré, G. (2020). Examining how chronically ill patients’ reactions to and effective use of information technology can influence how well they self-manage their illness. Mis Quarterly, 44(1), 351-389. 74. Sutcliffe, A. (2017). Designing user interfaces in emotionally-sensitive applications. In Human-Computer Interaction–INTERACT 2017: 16th IFIP TC 13 International Conference, Mumbai, India, September 25–29, 2017, Proceedings, Part III 16, 404-422. Springer International Publishing. 75. Shin, S., & Lee, W. J. (2014). The effects of technology readiness and technology acceptance on NFC mobile payment services in Korea. Journal of Applied Business Research, 30(6), 1615. 76. Siagian, H., Tarigan, Z. J. H., Basana, S. R., & Basuki, R. (2022). The effect of perceived security, perceived ease of use, and perceived usefulness on consumer behavioral intention through trust in digital payment platform (Doctoral dissertation, Petra Christian University). 77. Sanyal, P., Menon, N., & Siponen, M. (2021). An Empirical Examination of the Economics of Mobile Application Security. MIS Quarterly, 45(4). 78. Tian, Z., Shi, Z., & Cheng, Q. (2021). Examining the antecedents and consequences of mobile travel app engagement. Plos One, 16(3), e0248460. 79. Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075. 80. Toktarova, A., Abushakhma, A., Adylbekova, E., Manapova, A., Kaldarova, B., Atayev, Y., ... & Aidarkhanova, A. (2023). Offensive language identification in low resource languages using bidirectional long-short-term memory network. International Journal of Advanced Computer Science and Applications, 14(6). 81. Tu, Y. J., & Piramuthu, S. (2008). Reducing false reads in RFID-embedded supply chains. Journal of theoretical and applied electronic commerce research, 3(2), 60-70. 82. Tu, Y. J., Zhou, W., & Piramuthu, S. (2009). Identifying RFID-embedded objects in pervasive healthcare applications. Decision Support Systems, 46(2), 586-593. 83. Tu, Y. J., & Piramuthu, S. (2010). A decision-support model for filtering RFID read data in supply chains. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(2), 268-273. 84. Tu, Y., & Piramuthu, S. (2017). Lightweight non-distance-bounding means to address RFID relay attacks. Decision Support Systems, 102, 12-21. 85. Tu, Y. J., Zhou, W., & Piramuthu, S. (2018). A novel means to address RFID tag/item separation in supply chains. Decision Support Systems, 115, 13-23. 86. Tu, Y. J., & Piramuthu, S. (2020). On addressing RFID/NFC-based relay attacks: An overview. Decision Support Systems, 129, 113194. 87. Tu, Y. J., Zhou, W., & Piramuthu, S. (2021). Critical risk considerations in auto-ID security: Barcode vs. RFID. Decision Support Systems, 142, 113471. 88. Tu, Y. J., Kapoor, G., & Piramuthu, S. (2022). On Group Ownership Delegate Protocol for RFID Systems. Information Systems Frontiers, 24(5), 1577-1584. 89. Tu, Y. J., & Piramuthu, S. (2022). Models to address RFID-based ticket-switching in retailing. Decision Support Systems, 153, 113666. 90. Tu, Y. J., & Piramuthu, S. (2024). Ethical consumerism, supply chains, and deceptions with RFID-based systems. Information & Management, 61(6), 104016. 91. Vishwakarma, P., Tripathy, A., & Vemuru, S. (2018). The fact-finding security examination in NFC-enabled mobile payment system. International Journal of Electrical and Computer Engineering (Ijece), 8(3), 1774. 92. Venkatesh, V. and Morris, M. (2000). Why don't men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. Mis Quarterly, 24(1), 115. 93. Vance, A., Eargle, D., Eggett, D., Straub, D., & Ouimet, K. (2022). Do security fear appeals work when they interrupt tasks? a multi-method examination of password strength. Mis Quarterly, 45(3), 1721-1738. 94. Vance, A., Jenkins, J., Anderson, B., Bjornn, D., & Kirwan, C. (2018). Tuning out security warnings. Mis Quarterly, 42(2), 355-380. 95. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478. 96. Van den Bergh, J., & Coninx, K. (2014). CASSIS: a modeling language for customizable user interface designs. In Human-Centered Software Engineering: 5th IFIP WG 13.2 International Conference, HCSE 2014, Paderborn, Germany, September 16-18, 2014. Proceedings 5, 243-250. Springer Berlin Heidelberg. 97. Van Doorn, E., Horváth, I., & Rusák, Z. (2017). Information engineering for developing and testing coherent, integrated and context-dependent user interfaces. Cognition, Technology & Work, 19, 375-397. Rendell, A., Adam, M., & Eidels, A. (2019). Towards understanding the influence of nature imagery in user Interface design: A review of the literature. 98. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS quarterly, 695-704. 99. Willison, R. and Warkentin, M. (2013). Beyond deterrence: an expanded view of employee computer abuse. Mis Quarterly, 37(1), 1-20. 100. Wells, J. D., Parboteeah, V., & Valacich, J. S. (2011). Online impulse buying: understanding the interplay between consumer impulsiveness and website quality. Journal of the Association for Information Systems, 12(1), 3. 101. Wells, J. D., Valacich, J. S., & Hess, T. J. (2011). What signal are you sending? How website quality influences perceptions of product quality and purchase intentions. MIS quarterly, 373-396. 102. Wash, R., & Rader, E. (2015). Too much knowledge? security beliefs and protective behaviors among united states internet users. In Eleventh Symposium On Usable Privacy and Security (SOUPS 2015), 309-325. 103. Yin, D., Bond, S., & Zhang, H. (2014). Anxious or angry? effects of discrete emotions on the perceived helpfulness of online reviews. MIS Quarterly, 38(2), 539-560. 104. Yalcin, G., Lim, S., Puntoni, S., & Osselaer, S. (2022). Thumbs up or down: consumer reactions to decisions by algorithms versus humans. Journal of Marketing Research, 59(4), 696-717. 105. Yuan, Y., Wang, W., Wen, G., Zheng, Z., & Zhuang, Z. (2023). Sentiment Analysis of Chinese Product Reviews Based on Fusion of DUAL-Channel BiLSTM and Self-Attention. Future Internet, 15(11), 364. 106. Yadav, V., & Bethard, S. (2019). A survey on recent advances in named entity recognition from deep learning models. arXiv preprint arXiv:1910.11470. 107. Zhao, H., Anong, S., & Zhang, L. (2019). Understanding the impact of financial incentives on NFC mobile payment adoption. The International Journal of Bank Marketing, 37(5), 1296-1312. 108. Zhou, J., Kishore, R., Amo, L., & Ye, C. (2022). Description and Demonstration Signals as Complements and Substitutes in an Online Market for Mental Health Care. MIS Quarterly, 46(4). 109. Zhou, W., Tu, Y. J., & Piramuthu, S. (2009). RFID-enabled item-level retail pricing. Decision Support Systems, 48(1), 169-179. 110. Zhang, X., & Yang, H. (2019). Impact of cross-culture on behavioral information security. Journal of Integrated Design and Process Science, 22(2), 63-80. |