資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://nccur.lib.nccu.edu.tw/handle/140.119/158477
|
| 題名: | 基於YANG資料模型與gNMI的物聯網服務管理機制 Service Management Schemes for IoT Devices based on YANG Data Model and gNMI |
| 作者: | 陳品絜 Chen, Pin-Chieh |
| 貢獻者: | 廖峻鋒 Liao, Chun-Feng 陳品絜 Chen, Pin-Chieh |
| 關鍵詞: | YANG data model gNMI mDNS DNS-SD 服務發現 服務管理 Internet of Thing YANG data model gNMI mDNS DNS-SD Service Discovery Service Management Internet of Thing |
| 日期: | 2025 |
| 上傳時間: | 2025-08-04 13:58:08 (UTC+8) |
| 摘要: | 隨著物聯網技術發展,裝置數量日益增長,大量的裝置仰賴服務管理協定來運作。在現有服務管理協定中,UPnP功能完整,但效能不佳,且服務描述受限於固定形式。mDNS/DNS-SD則是輕量化且相容性高的服務發現協定,然而它功能性不足,欠缺服務描述與服務存取機制。本研究針對前述問題,提出基於YANG資料模型與gNMI的服務管理機制,兼具表達彈性與效能潛力。YANG 為網路管理領域中廣泛使用的資料建模語言,具備良好可讀性與高度表達彈性。gNMI是建構在 gRPC 上的 YANG 網管協定,具備高效能特性。然而,基於YANG的網管協定欠缺動態發現裝置的能力,因此本研究針對 gNMI 提出兩種不同的服務發現方案:一是整合 mDNS/DNS-SD的去中心化服務發現方案,二是支援gNMI的服務目錄之集中式服務發現方案。本研究進一步針對物聯網場景,研製基於YANG與gNMI的服務管理系統。此外亦開發了將UPnP描述檔自動轉換為YANG的工具程式,降低開發負擔並促進既有系統的遷徙。最後透過系統原型進行實驗評估,驗證所提出的兩種服務發現方法的可行性,以及本系統在服務發現、存取與通知等面向的效能優於 UPnP 系統。 As the Internet of Things (IoT) continues to expand, the growing number of connected devices increasingly depends on service management protocols. While UPnP offers comprehensive functionality, it suffers from poor performance and a rigid service description format. In contrast, mDNS/DNS-SD is lightweight and highly compatible but lacks service description and access mechanisms. To address these limitations, this study proposes a service management framework based on the YANG data model and the gNMI protocol, combining expressive flexibility with high performance. YANG is widely used in network management for its readability and support for automation, while gNMI, built on gRPC, enables efficient data transmission. However, YANG-based protocols lack dynamic device discovery, limiting their use in IoT environments. This work specifically focuses on gNMI and introduces two discovery strategies: a decentralized approach using mDNS/DNS-SD and a centralized gNMI-based solution. We further design and implement a YANG/gNMI service management system tailored for IoT, along with a tool for automatically converting UPnP descriptions to YANG to facilitate system migration. Performance evaluations demonstrate the feasibility of both discovery methods and show that the proposed system delivers superior performance compared to UPnP across key features such as discovery, access, and notification. |
| 參考文獻: | [1] A. Donoho, B. Roe, M. Bodlaender, et al., “Upnp device architecture 2.0”, Open Connectivity Foundation, Tech. Rep., Apr. 2020, Document Revision Date: April 17, 2020. [Online]. Available: `https://openconnectivity.org/upnp-specs/UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf`. [2] S. Cheshire and M. Krochmal, Multicast DNS, RFC 6762, Feb. 2013. doi: `10.17487/RFC6762`. [Online]. Available: `https://www.rfc-editor.org/info/rfc6762`. [3] S. Cheshire and M. Krochmal, DNS-Based Service Discovery, RFC 6763, Feb. 2013. doi: `10.17487/RFC6763`. [Online]. Available: `https://www.rfc-editor.org/info/rfc6763`. [4] B. Carballido Villaverde, R. D. P. Alberola, A. J. Jara, S. Fedor, S. K. Das, and D. Pesch, “Service discovery protocols for constrained machine-to-machine communications”, *IEEE Communications Surveys & Tutorials*, vol. 16, no. 1, pp. 41–60, 2014. doi: `10.1109/SURV.2013.102213.00229`. [5] M. Björklund, The YANG 1.1 Data Modeling Language, RFC 7950, Aug. 2016. doi: `10.17487/RFC7950`. [Online]. Available: `https://www.rfc-editor.org/info/rfc7950`. [6] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, Network Configuration Protocol (NETCONF), RFC 6241, Jun. 2011. doi: `10.17487/RFC6241`. [Online]. Available: `https://www.rfc-editor.org/info/rfc6241`. [7] B. Claise, J. Clarke, and J. Lindblad, *Network Programmability with YANG*. Boston, MA: Addison-Wesley, Jan. 2019. [8] A. Amlou, A. Abane, M. Merzouki, L. A. Oucheggou, Z. Maasaoui, and A. Battou, “Automated network programmability using openconfig yang models and netconf protocol”, in *2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA)*, 2023, pp. 1–5. doi: `10.1109/AICCSA59173.2023.10479244`. [9] World Wide Web Consortium (W3C), Web of Things (WoT) Thing Description 1.1, `https://www.w3.org/TR/wot-thing-description11/`, W3C Recommendation, Dec. 2023. [10] A. Bierman, M. Björklund, and K. Watsen, RESTCONF Protocol, RFC 8040, Jan. 2017. doi: `10.17487/RFC8040`. [Online]. Available: `https://www.rfc-editor.org/info/rfc8040`. [11] P. Borman, M. Hines, C. Lebsack, et al., Grpc network management interface (gnmi), version 0.10.0, gNMI service compatibility: 0.10.x, OpenConfig, May 2023. [Online]. Available: `https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md`. [12] S. Popić, D. Pezer, B. Mrazovac, and N. Teslić, “Performance evaluation of using protocol buffers in the internet of things communication”, in *2016 International Conference on Smart Systems and Technologies (SST)*, 2016, pp. 261–265. doi: `10.1109/SST.2016.7765670`. [13] M. G. Bhat, S. Bhattacharjee, C. Gündoğan, K. Alexandris, and A. Gogolev, “Core-conf, netconf, and restconf: Benchmarking network orchestration in constrained iiot devices”, *IEEE Internet of Things Journal*, vol. 11, no. 7, pp. 13 082–13 090, 2024. doi: `10.1109/JIOT.2023.3338470`. [14] Ritu, S. Arora, A. Bhardwaj, A. Kukkar, and S. Kaur, “A comparative analysis of communication efficiency: Rest vs. grpc in microservice-based ecosystems”, in *2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP)*, 2024, pp. 621–626. doi: `10.1109/INNOCOMP63224.2024.00107`. [15] M. Boucadair, L. M. Contreras, O. G. de Dios, T. Graf, R. Rahman, and L. Tailhardat, “RFC 3535, 20 Years Later: An Update of Operators Requirements on Network Management Protocols and Modelling”, Internet Engineering Task Force, Internet-Draft draft-boucadair-nmop-rfc3535-20years-later-07, Mar. 2025, Work in Progress, 39 pp. [Online]. Available: `https://datatracker.ietf.org/doc/draft-boucadair-nmop-rfc3535-20years-later/07/`. [16] M. G. Bhat, S. Bhattacharjee, C. Gündoğan, K. Alexandris, and A. Gogolev, “Core-conf, netconf, and restconf: Benchmarking network orchestration in constrained iiot devices”, *IEEE Internet of Things Journal*, vol. 11, no. 7, pp. 13 082–13 090, 2024. doi: `10.1109/JIOT.2023.3338470`. [17] K. Sahlmann, T. Scheffler, and B. Schnor, “Ontology-driven device descriptions for iot network management”, in *2018 Global Internet of Things Summit (GIoTS)*, 2018, pp. 1–6. doi: `10.1109/GIOTS.2018.8534569`. [18] S. Sinche, D. Raposo, N. Armando, et al., “A survey of iot management protocols and frameworks”, *IEEE Communications Surveys & Tutorials*, vol. 22, no. 2, pp. 1168–1190, 2020. doi: `10.1109/COMST.2019.2943087`. [19] R. T. Fielding, *Architectural styles and the design of network-based software architectures*. University of California, Irvine, 2000. [20] C.-F. Liao, H.-C. Chang, and L.-C. Fu, “Message-Efficient Service Management Schemes for MOM-Based UPnP Networks”, *IEEE Transactions on Services Computing*, vol. 6, no. 2, pp. 214–226, Apr. 2013, issn: 1939-1374. doi: `10.1109/TSC.2011.43`. [Online]. Available: `https://ieeexplore.ieee.org/document/5963633/`. [21] B. Carballido Villaverde, R. D. P. Alberola, A. J. Jara, S. Fedor, S. K. Das, and D. Pesch, “Service Discovery Protocols for Constrained Machine-to-Machine Communications”, *IEEE Communications Surveys & Tutorials*, vol. 16, no. 1, pp. 41–60, 2014, issn: 1553-877X. doi: `10.1109/SURV.2013.102213.00229`. [Online]. Available: `https://ieeexplore.ieee.org/document/6657501/`. [22] G. Kayas, M. Hossain, J. Payton, and S. M. R. Islam, “An Overview of UPnP-based IoT Security: Threats, Vulnerabilities, and Prospective Solutions”, in *2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)*, Jan. 2020, pp. 0452–0460. doi: `10.1109/IEMCON51383.2020.9284885`. [Online]. Available: `https://ieeexplore.ieee.org/document/9284885/`. [23] M. Mahyoub, A. Mahmoud, and T. Sheltami, “An optimized discovery mechanism for smart objects in IoT”, in *2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)*, Oct. 2017, pp. 649–655. doi: `10.1109/IEMCON.2017.8117191`. [Online]. Available: `https://ieeexplore.ieee.org/document/8117191/`. [24] M. Stolikj, P. J. L. Cuijpers, J. J. Lukkien, and N. Buchina, “Context based service discovery in unmanaged networks using mDNS/DNS-SD”, in *2016 IEEE International Conference on Consumer Electronics (ICCE)*, Jan. 2016, pp. 163–165. doi: `10.1109/ICCE.2016.7430565`. [Online]. Available: `https://ieeexplore.ieee.org/document/7430565/`. [25] C.-F. Liao and Y.-J. Weng, “Enabling Space-Aware Service Discovery Model in Home Networks through a Compatible Extension to mDNS/DNS-SD”, *Electronics*, vol. 12, no. 18, p. 3885, 18 Jan. 2023, issn: 2079-9292. doi: `10.3390/electronics12183885`. [Online]. Available: `https://www.mdpi.com/2079-9292/12/18/3885`. [26] K. Seklou, P. Kokkinos, N. D. Tselikas, and A. C. Boukouvalas, “Monitoring and management of home appliances with netconf and yang”, in *Proceedings of the 23rd Pan-Hellenic Conference on Informatics, ser. PCI ’19*, Nicosia, Cyprus: Association for Computing Machinery, 2019, pp. 25–32, isbn: 9781450372923. doi: `10.1145/3368640.3368643`. [Online]. Available: `https://doi.org/10.1145/3368640.3368643`. [27] C. Chung and J. P. Jeong, “A Design of IoT Device Configuration Translator for Intent-Based IoT-Cloud Services”, in *2020 22nd International Conference on Advanced Communication Technology (ICACT)*, Feb. 2020, pp. 52–56. doi: `10.23919/ICACT48636.2020.9061282`. [Online]. Available: `https://ieeexplore.ieee.org/document/9061282/`. [28] Y. Yigit, K. Huseynov, H. Ahmadi, and B. Canberk, “YA-DA: YAng-Based DAta Model for Fine-Grained IIoT Air Quality Monitoring”, in *2022 IEEE Globecom Workshops (GC Wkshps)*, Feb. 2022, pp. 438–443. doi: `10.1109/GCWkshps56602.2022.10008637`. [Online]. Available: `https://ieeexplore.ieee.org/document/10008637/`. [29] L. V. Cakir, T. Bilen, M. Özdem, and B. Canberk, “Digital Twin Middleware for Smart Farm IoT Networks”, in *2023 International Balkan Conference on Communications and Networking (BalkanCom)*, Jun. 2023, pp. 1–5. doi: `10.1109/BalkanCom58402.2023.10167962`. [Online]. Available: `https://ieeexplore.ieee.org/abstract/document/10167962`. [30] IoT Atlas. “Model-view-controller (mvc)”. Accessed: 2025-05-01. (2023), [Online]. Available: `https://iotatlas.net/en/patterns/mvc/`. [31] K. Watsen, Q. Wu, P. Andersson, O. Hagsand, and H. Li, “List Pagination for YANG-driven Protocols”, Internet Engineering Task Force, Internet-Draft draft-ietf-netconf-list-pagination-07, Apr. 2025, Work in Progress, 68 pp. [Online]. Available: `https://datatracker.ietf.org/doc/draft-ietf-netconf-list-pagination/07/`. [32] A. Bierman, Guidelines for Authors and Reviewers of Documents Containing YANG Data Models, RFC 8407, Oct. 2018. doi: `10.17487/RFC8407`. [Online]. Available: `https://www.rfc-editor.org/info/rfc8407`. [33] OpenConfig. “Openconfig style guide”. Accessed on May 12, 2025. (2025), [Online]. Available: `https://www.openconfig.net/docs/guides/style_guide/`. [34] C.-F. Liao, H.-H. Cheng, and L.-C. Fu, “Unifiable preference expressions for pervasive service composition”, in *2011 IEEE Asia-Pacific Services Computing Conference*, 2011, pp. 424–431. doi: `10.1109/APSCC.2011.11`. [35] M. Bjorklund. “Pyang”. GitHub repository. (2025), [Online]. Available: `https://github.com/mbj4668/pyang`. [36] P.-C. Chen. “Upnp-desc-to-yang”. GitHub repository. (2025), [Online]. Available: `https://github.com/pj-99/upnp-desc-to-yang`. |
| 描述: | 碩士 國立政治大學 資訊科學系 112753115 |
| 資料來源: | http://thesis.lib.nccu.edu.tw/record/#G0112753115 |
| 資料類型: | thesis |
| 顯示於類別: | [資訊科學系] 學位論文
|
文件中的檔案:
| 檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
| 311501.pdf | | 3566Kb | Adobe PDF | 0 | 檢視/開啟 |
|
在政大典藏中所有的資料項目都受到原著作權保護.
|