English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116849/147881 (79%)
Visitors : 64166204      Online Users : 646
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157861


    Title: 量子糾纏隨機遊走在雙資產價格預測中的應用
    An Application of Entangled Quantum Walks to Dual-Asset Price Prediction
    Authors: 楊叮噹
    Yang, Ding-Dang
    Contributors: 王國樑
    張晏瑞

    楊叮噹
    Yang, Ding-Dang
    Keywords: 雙資產量子糾纏行走
    雙資產市場價格波動
    資產依存
    量子金融
    Dual-Asset Entangled Quantum Walk
    Price Dynamics in the Dual-asset Markets
    Asset Dependency
    Quantum Finance
    Date: 2025
    Issue Date: 2025-07-01 15:34:54 (UTC+8)
    Abstract: 本研究提出一套創新的雙資產量子行走模型,用以模擬投資者行為對雙資產市場價格波動的影響。該模型在捕捉金融資產間關係與複雜交互作用方面表現優異,展現出卓越的預測準確性,並能廣泛適用於不同時間區間與標的資產型態,顯示出高度的一般化能力。
    This research introduces an innovative Dual-Assets Entangled Quantum Walk (DEQW) model to simulate the impact of investors’ behavior on price dynamics in the dual-asset markets. The model excels in capturing dependencies and complex interactions between financial assets, demonstrating high predictive accuracy and strong generalization across various timeframes and asset types.
    Reference: 1. Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l'École normale supérieure,
    2. Childs, A. M. (2009). Universal computation by quantum walk. Physical review letters, 102(18), 180501.
    3. Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., & Spielman, D. A. (2003). Exponential algorithmic speedup by a quantum walk. Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. Proceedings of the thirty-fifth annual ACM symposium on Theory of computing , 59-68.
    4. Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative finance, 1(2), 223.
    5. Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in finance (Vol. 1170). Springer.
    6. Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner, S., & Yndurain, E. (2020). Quantum computing for finance: State-of-the-art and future prospects. IEEE Transactions on Quantum Engineering, 1, 1-24.
    7. Fama, E. F. (1970). Efficient capital markets. Journal of finance, 25(2), 383-417.
    8. Fama, E. F. (2014). Two pillars of asset pricing. American Economic Review, 104(6), 1467-1485.
    9. Gerlein, E. A., McGinnity, M., Belatreche, A., & Coleman, S. (2016). Evaluating machine learning classification for financial trading: An empirical approach. Expert Systems with Applications, 54, 193-207.
    10. Glasserman, P. (2004). Monte Carlo methods in financial engineering (Vol. 53). Springer.
    11. Kempe, J. (2003). Quantum random walks: an introductory overview. Contemporary Physics, 44(4), 307-327.
    12. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The annals of mathematical statistics, 22(1), 79-86.
    13. Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of economic perspectives, 17(1), 59-82.
    14. Malkiel, B. G. (2019). A random walk down Wall Street: the time-tested strategy for successful investing. WW Norton & Company.
    15. Mantegna, R. N., & Stanley, H. E. (1999). Introduction to econophysics: correlations and complexity in finance. Cambridge university press.
    16. Orús, R., Mugel, S., & Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4, 100028.
    17. Ostaszewski, M., Grant, E., & Benedetti, M. (2021). Structure optimization for parameterized quantum circuits. Quantum, 5, 391.
    18. Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). Deep learning for financial applications: A survey. Applied soft computing, 93, 106384.
    19. Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial derivatives. Physical Review A, 98(2), 022321.
    20. Rebentrost, P., & Lloyd, S. (2024). Quantum computational finance: quantum algorithm for portfolio optimization. KI-Künstliche Intelligenz, 1-12.
    21. Sirignano, J., & Cont, R. (2021). Universal features of price formation in financial markets: perspectives from deep learning. In Machine learning and AI in finance (pp. 5-15). Routledge.
    22. Worthington, A., & Higgs, H. (2004). Random walks and market efficiency in European equity markets. The Global Journal of Finance and Economics, 1(1), 59-78.
    Description: 碩士
    國立政治大學
    經濟學系
    112258018
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112258018
    Data Type: thesis
    Appears in Collections:[經濟學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    801801.pdf818KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback