Reference: | Akinjole, A., Shobayo, O., Popoola, J., Okoyeigbo, O., & Ogunleye, B. (2024). Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction. Mathematics, 12(21), 3423. Álvarez-García, O., & Sureda-Negre, J. (2023). Greenwashing and education: An evidence-based approach. The Journal of Environmental Education, 54, 265–277. Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173. Berg, F., Kölbel, J., & Rigobon, R. (2022a). Aggregate Confusion: The Divergence of ESG Ratings. Review of Finance, 26(6), 1315–1344. Brandon, G., Krueger, P., & Schmidt, P. (2019). ESG Rating Disagreement and Stock Returns. Financial Analysts Journal, 77, 104–127. De Freitas Netto, S., Sobral, M., Ribeiro, A., & Da Luz Soares, G. (2020). Concepts and forms of greenwashing: A systematic review. Environmental Sciences Europe, 32, 1–12. Delmas, M., & Burbano, V. (2011a). The Drivers of Greenwashing. California Management Review, 54, 64–87. Delmas, M., & Burbano, V. (2011b). The Drivers of Greenwashing. California Management Review, 54, 64–87. Galletta, S., Mazzù, S., Naciti, V., & Paltrinieri, A. (2024). A PRISMA systematic review of greenwashing in the banking industry: A call for action. Research in International Business and Finance. Gao, B., & Balyan, V. (2022). Construction of a financial default risk prediction model based on the LightGBM algorithm. Journal of Intelligent Systems, 31, 767–779. Garrido-Merchán, E., González-Barthe, C., & Vaca, M. (2023). Fine-tuning ClimateBert Transformer with ClimaText for the Disclosure Analysis of Climate-related Financial Risks. arXiv preprint arXiv:2303.13373. Guo, K., Bian, Y., Zhang, D., & Ji, Q. (2024). ESG performance and corporate external financing in China: The role of rating disagreement. Research in International Business and Finance. Hamori, S., Kawai, M., Kume, T., Murakami, Y., & Watanabe, C. (2018). Ensemble Learning or Deep Learning? Application to Default Risk Analysis. Journal of Risk and Financial Management, 11(1), 12. Hu, X. & coauthors. (2023). ESG Rating Discrepancy and Climate Greenwashing. Hu, X., Hua, R., Liu, Q., & Wang, C. (2023). The green fog: Environmental rating disagreement and corporate greenwashing. Pacific-Basin Finance Journal, 78, 101952. Kim, R., & Koo, B. (2023). The impact of ESG rating disagreement on corporate value. Journal of Derivatives and Quantitative Studies. Kölbel, J., Leippold, M., Rillaerts, J., & Wang, Q. (2020a). Ask BERT: How Regulatory Disclosure of Transition and Physical Climate Risks Affects the CDS Term Structure. Environmental Science eJournal. Kölbel, J., Leippold, M., Rillaerts, J., & Wang, Q. (2020b). Does the CDS Market Reflect Regulatory Climate Risk Disclosures? University of Zurich Working Paper. Kündig, P., & Sigrist, F. (2024). A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios. arXiv preprint arXiv:2410.02846. Lai, Y., & Chen, M. (2024). Using Natural Language Processing With Explainable AI Approach to Construct a Human-Centric Consumer Application for Financial Climate Disclosures. IEEE Transactions on Consumer Electronics, 70, 1112–1121. Li, G., & Cheng, Y. (2024). Impact of environmental, social, and governance rating disagreement on real earnings management in Chinese listed companies. Global Finance Journal. Li, W., Ding, S., Wang, H., Chen, Y., & Yang, S. (2019). Heterogeneous ensemble learning with feature engineering for default prediction in peer-to-peer lending in China. World Wide Web, 23, 23–45. Liu, X., Dai, J., Dong, X., & Liu, J. (2024). ESG rating disagreement and analyst forecast quality. International Review of Financial Analysis. Liu, X., Liu, J., Liu, J., & Qiong, Z. (2024). Can investor-firm interactions mitigate ESG rating divergence? Evidence from China. International Review of Financial Analysis. Menardi, G., Tedeschi, F., & Torelli, N. (2011). On the Use of Boosting Procedures to Predict the Risk of Default. In Classification and Multivariate Analysis for Complex Data Structures (pp. 211-218). Berlin, Heidelberg: Springer Berlin Heidelberg. Nemes, N., Scanlan, S., Smith, P., Smith, T., Aronczyk, M., Hill, S., Lewis, S., Montgomery, A., Tubiello, F., & Stabinsky, D. (2022). An Integrated Framework to Assess Greenwashing. Sustainability, 14(8), 4431. Saavedra, C., Gomes, J., De Castro Gomes, E., & Kimura, H. (2024). Probability of default for lifetime credit loss for IFRS 9 using machine learning competing risks survival analysis models. Expert Systems with Applications, 249, 123607. Sautner, Z., Van Lent, L., Vilkov, G., & Zhang, R. (2023). Firm-level climate change exposure. The Journal of Finance, 78(3), 1449–1498. Sigrist, F., & Hirnschall, C. (2017). Grabit: Gradient tree-boosted Tobit models for default prediction. Journal of Banking & Finance. Spaniol, M., Danilova-Jensen, E., Nielsen, M., Rosdahl, C., & Schmidt, C. (2024). Defining Greenwashing: A Concept Analysis. Sustainability, 16(20). Szabo, S., & Webster, J. (2020). Perceived Greenwashing: The Effects of Green Marketing on Environmental and Product Perceptions. Journal of Business Ethics, 171, 719–739. Torelli, R., Balluchi, F., & Lazzini, A. (2019). Greenwashing and Environmental Communication: Effects on Stakeholders’ Perceptions. Socially Responsible Investment eJournal. Uddin, M., Chi, G., Habib, T., & Zhou, Y. (2019). An Alternative Statistical Framework for Credit Default Prediction. Journal of Risk Model Validation. Wang, J., Wang, S., Dong, M., & Wang, H. (2023). ESG rating disagreement and stock returns: Evidence from China. International Review of Financial Analysis. Wu, M. & coauthors. (2020). Greenwashing Theoretical Model. Yu, E., Luu, B., & Chen, C. (2020). Greenwashing in environmental, social and governance disclosures. Research in International Business and Finance, 52, 101192. Zhang, X., Kong, L., & Hu, X. (2024). Shades of Green: The Impact of Greenwashing on Stock Price Crash Risk. Finance Research Letters. Zhang, X., Shan, Y., Zhang, Y., & Xing, C. (2025). Does ESG rating divergence affect the cost of corporate debt? Accounting & Finance. Zhou, J., Li, W., Wang, J., Ding, S., & Xia, C. (2019). Default prediction in P2P lending from high-dimensional data based on machine learning. Physica A: Statistical Mechanics and its Applications. Zhu, J., Xiong, Z., Lu, X., & Yao, Z. (2024). Does ESG rating disagreement impede corporate green innovation? Global Finance Journal. |