English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 118405/149442 (79%)
Visitors : 78375450      Online Users : 304
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/157827
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157827


    Title: 藉由機器學習強化基本面、股市動能與市場情緒的動態因子模型:以台灣股票市場為例
    Machine Learning-Enhanced Dynamic Factor Models for Taiwanese Stock Markets: Integrating Fundamentals, Momentum, and Sentiment Factors
    Authors: 簡祥育
    Chien, Hsiang-Yu
    Contributors: 江彌修
    Chiang, Mi-Hsiu
    簡祥育
    Chien, Hsiang-Yu
    Keywords: 動態因子模型
    主成分分析
    機器學習
    資產定價
    Dynamic Factor Model
    Principal Component Analysis
    Machine Learning
    Asset Pricing
    Date: 2025
    Issue Date: 2025-07-01 15:15:47 (UTC+8)
    Abstract: 本研究以台灣股票市場為資料,藉由納入多種資產特徵,建構不同於 Fama and French (2018) 架構的動態因子模型。本文採用 Kelly et al. (2019) 所提出之 Instrumented Principal Component Analysis (IPCA) 方法,評估不同特徵組合與模型在統計解釋力與風險補償能力上的表現。研究結果顯示,相較於傳統的 Fama and French (2018) 六因子模型與主成分分析 (PCA) 方法,IPCA 模型於樣本外展現出更佳的表現。此外,IPCA 能夠從大量資產特徵中提取出具有財務意涵的潛在因子,並兼顧基本面、股價動能、投資人情緒及籌碼面資訊。另一方面,分析結果亦顯示模型所擷取之因子與產業結構具有關聯,提升對於因子財務詮釋的能力。此外,透過採用拔靴法進行特徵重要性檢定的結果顯示,模型所納入之多項特徵在統計上呈現顯著,進一步支持這些特徵於資產超額報酬解釋上的有效性。
    This study utilizes data from the Taiwan stock market to construct a dynamic factor model that differs from the Fama and French (2018) framework by incorporating a wide range of asset characteristics. This study employs the Instrumented Principal Component Analysis (IPCA) method proposed by Kelly et al. (2019) to evaluate the model's performance related to both statistical explanatory power and risk compensation ability under several combinations of characteristics and models. The empirical results show that the IPCA model outperforms both the traditional Fama and French six-factor model and the Principal Component Analysis (PCA) approach in out-of-sample performance. Moreover, IPCA is able to extract latent factors with financial interpretations from high-dimensional characteristic data, capturing information combining fundamentals, price momentum, investor sentiment, and ownership structure. In addition, the analysis reveals a strong relationship between the extracted factors and industry structure, enhancing the model’s interpretability in terms of financial explanation. Finally, the bootstrap-based feature significance tests validate that many of the incorporated characteristics are statistically significant, further supporting their effectiveness in explaining cross-sectional variation in excess returns.
    Reference: 周賓凰、張宇志、林美珍 (2019)。投資人情緒與股票報酬互動關係。證券市場發展季刊:行為財務學特別專刊,19(2),153-190。
    蔡佩蓉、王元章、張眾卓 (2009)。投資人情緒、公司特徵與台灣股票報酬之研究。經濟研究,45(2),273-322。
    Acharya, V. V., & Pedersen, L. H. (2005). Asset pricing with liquidity risk. Journal of Financial Economics, 77(2), 375–410.
    Ait-Sahalia, Y., Jacod, J., & Xiu, D. (2020). Inference on risk premia in Continuous-Time asset Pricing models. SSRN Electronic Journal.
    Asness, C. S., Frazzini, A., & Pedersen, L. H. (2019). Quality minus junk. Review of Accounting Studies, 24(1), 34–112.
    Baker, M., & Stein, J. C. (2004). Market liquidity as a sentiment indicator. Journal of Financial Markets, 7(3), 271–299.
    Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. The Journal of Finance, 61(4), 1645–1680.
    Barber, B. M., Lee, Y.-T., Liu, Y.-J., & Odean, T. (2009). Just how much do individual investors lose by trading? The Review of Financial Studies, 22(2), 609–632.
    Brown, G. W., & Cliff, M. T. (2004). Investor sentiment and the near-term stock market. Journal of Empirical Finance, 11(1), 1–27.
    Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52(1), 57–82.
    Chamberlain, G., & Rothschild, M. (1983). Arbitrage, factor structure, and Mean-Variance analysis on large asset markets. Econometrica, 51(5), 1281.
    Chordia, T., Roll, R., & Subrahmanyam, A. (2000). Commonality in liquidity. Journal of Financial Economics, 56(1), 3–28.
    Cochrane, J. H. (2011). Presidential address: Discount rates. The Journal of Finance, 66(4), 1047–1108.
    Fama, E. F., & MacBeth, J. D. (1973). Risk, Return, and equilibrium: Empirical tests. Journal of Political Economy, 81(3), 607–636.
    Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56.
    Fama, E. F., & French, K. R. (1996). Multifactor explanations of asset pricing anomalies. The Journal of Finance, 51(1), 55–84.
    Fama, E. F., & French, K. R. (2018). Choosing factors. Journal of Financial Economics, 128(2), 234–252.
    Feng, G., Giglio, S., & Xiu, D. (2020). Taming the Factor Zoo: A test of new factors. The Journal of Finance, 75(3), 1327–1370.
    Giglio, S., & Xiu, D. (2021). Asset Pricing with Omitted Factors. Journal of Political Economy, 129(7), 1947–1990.
    Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. The Review of Financial Studies, 33(5), 2223–2273.
    Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics, 222(1), 429–450.
    Han, Y., He, A., Rapach, D. E., & Zhou, G. (2024). Cross-sectional expected returns: New Fama–MacBeth regressions in the era of machine learning. Review of Finance, 28(6), 1807–1831.
    Jegadeesh, N. (1990). Evidence of predictable behavior of security returns. The Journal of Finance, 45(3), 881–898.
    Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48(1), 65–91.
    Kelly, B. T., Pruitt, S., & Su, Y. (2017). Instrumented Principal component analysis. SSRN Electronic Journal.
    Kelly, B. T., Pruitt, S., & Su, Y. (2019). Characteristics are covariances: A unified model of risk and return. Journal of Financial Economics, 134(3), 501–524.
    Kelly, B., Palhares, D., & Pruitt, S. (2023). Modeling corporate bond returns. The Journal of Finance, 78(4), 1967–2008.
    Lee, C. M. C., & Swaminathan, B. (2000). Price momentum and Trading Volume. The Journal of Finance, 55(5), 2017–2069.
    Lettau, M., & Pelger, M. (2020). Estimating latent asset-pricing factors. Journal of Econometrics, 218(1), 1–31.
    Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13.
    Pástor, Ľ., & Stambaugh, R. F. (2003). Liquidity risk and expected stock returns. Journal of Political Economy, 111(3), 642–685.
    Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360.
    Sharpe, W. F. (1964). CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK. The Journal of Finance, 19(3), 425–442.
    Description: 碩士
    國立政治大學
    金融學系
    111352011
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111352011
    Data Type: thesis
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201101.pdf3191KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback