English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 116849/147881 (79%)
Visitors : 63501754      Online Users : 448
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/157735


    Title: 以加權範數懲罰函數建構之投資組合實證研究:以2008金融海嘯與新冠肺炎時間區間為例
    An Empirical Study on Portfolio Construction Using Weighted Norm Penalty Functions: Evidence from the 2008 Financial Crisis and the COVID-19 Pandemic Periods
    Authors: 戴晨宇
    Tai, Chen-Yu
    Contributors: 顏佑銘
    Yen, Yu-Min
    戴晨宇
    Tai, Chen-Yu
    Keywords: 加權範數懲罰函數
    最小變異數投資組合
    2008年金融海嘯
    新冠肺炎疫情
    Weighted-norm penalty function
    Minimum-variance portfolio
    2008 financial crisis
    COVID-19 pandemic
    Date: 2025
    Issue Date: 2025-07-01 14:37:01 (UTC+8)
    Abstract: 本研究旨在探討加權範數懲罰函數於最小變異數投資組合建構中的應用與實證成效,並檢視其於市場動盪期間的穩健性與報酬潛力。傳統最小變異數法於高維度資產結構中易受估計誤差影響,導致樣本外表現不穩與權重極端化現象。為克服此問題,本文採用加權範數最小變異數投資組合,透過同時引入l_1與l_2^2,達成投資組合權重的稀疏化與穩定性。
    本研究以四十三間台灣市值排名前段之上市公司為樣本,分析期間涵蓋2004年至2024年,並特別納入2008年金融海嘯與2020年新冠肺炎疫情等重大市場事件進行分段分析,使用十項績效指標評估加權範數最小變異數投資組合與1/N、NSMVP、GMVP的樣本外表現,並擴充分析設定目標報酬限制與替代範數懲罰之應用成效。
    實證結果顯示,加權範數最小變異數投資組合於市場正常時在風險調整後報酬表現優異,市場波動時則有助於降低投組風險,此外,設定目標報酬條件反而導致報酬下降與波動上升,而三種替代範數懲罰整體表現與加權範數最小變異數投組接近。
    This study investigates the application and empirical performance of the weighted-norm penalty function in constructing minimum-variance portfolios (MVP), with particular focus on its robustness and return potential during periods of market turbulence. Traditional MVPs are prone to estimation errors, especially in high-dimensional asset spaces, which often results in unstable out-of-sample performance and extreme portfolio weights. To address these issues, this research adopts the Weighted-Norm Minimum-Variance Portfolio (WNMVP), which incorporates both l_1 and l_2^2 norm penalties to simultaneously achieve sparsity and stability in portfolio weights.
    The empirical analysis is based on 43 publicly listed Taiwanese large-cap companies, covering the period from 2004 to 2024. The study includes sub-period analyses of major market disruptions, such as the 2008 Global Financial Crisis and the 2020 COVID-19 pandemic. Out-of-sample performance is evaluated across ten performance metrics, comparing WNMVP with the 1/N strategy, the No-Short-Sale Minimum-Variance Portfolio (NSMVP), and the Global Minimum-Variance Portfolio (GMVP). In addition, the effectiveness of target return constraints and alternative norm penalty functions is also examined.
    The results indicate that WNMVP outperforms other strategies in terms of risk-adjusted returns under normal market conditions and contributes to risk reduction during turbulent periods. However, imposing a target return constraint tends to reduce returns and increase volatility. Furthermore, the three alternative norm penalty strategies exhibit overall performance comparable to that of WNMVP.
    Reference: 1.王依婷(2007),投資人之交易偏好分析,國立中正大學會計與資訊科技研究所出版碩士論文。
    2.Clarke, R., de Silva, H., and Thorley, S. (2013). Risk parity, maximum diversification, and minimum variance: An analytic perspective. The Journal of Portfolio Management, 39(3), 39–53.
    3.DeMiguel, V., Garlappi, L., and Uppal, R. (2007). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5), 1915–1953.
    4.DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.
    5.Goetzmann, W. N. and Kumar, A. (2008). Equity Portfolio Diversification, Review of Finance, 12(3), 433–463.
    6.Haugen, R. A., and Baker, N. L. (1991). The efficient market inefficiency of capitalization-weighted stock portfolios. The Journal of Portfolio Management, 17(3), 35–40.
    7.Jagannathan, R., and Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 1651-1684.
    8.Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.
    9.Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442.
    10.Yen, Y. M. (2015). Sparse Weighted-Norm Minimum Variance Portfolios. Review of Finance, 20, 1259-1287.
    Description: 碩士
    國立政治大學
    國際經營與貿易學系
    112351010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0112351010
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File Description SizeFormat
    101001.pdf1970KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback