政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/156427
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 115406/146445 (79%)
Visitors : 55019455      Online Users : 334
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/156427


    Title: 具反應擴散項之耦合生物系統的動態研究
    The Dynamics in Coupled Biological Systems with Reaction-Diffusion Terms
    Authors: 曾睿彬
    Contributors: 應數系
    Keywords: 反應擴散項;耦合系統;同步化;時間延遲
    Reaction-diffusion term;coupled systems;synchronization;time-delay
    Date: 2020-01
    Issue Date: 2025-03-31 11:55:19 (UTC+8)
    Abstract: 在過去的幾十年裡, 具有反應擴散項與時間延遲之耦合偏微分方程式已經吸了許多的研究興趣,其中所涉及的研究問題包含了系統的同步化、耗散性、穩定性與收斂性。在目前的文獻中,常微分方程式或時間延遲微分方程的同步化已被廣泛地研究。然而,對於偏微分方程的同步化研究相對少了許多。 在這個研究計劃,我們計畫研究具反應擴散項與時間延遲之耦合偏微分方程式之同步化行為,以及其它動態行為,包含耗散性、穩定性與收斂性。特別地,我們希望可將所發展的理論運用於較真實的生物模型上。本計劃申請人本年度提出二件研究計畫,而此計劃為第一優先。
    There have been increasingly intensive studies on coupled partial differential equations with reaction-diffusion terms and time delays in the past few decades. The research questions involved in these studies include the synchronization, dissipation, stability and convergence of the systems. In the existing literature, the synchronization of ordinary differential equations or time-delay differential equations has been extensively studied. However, there is relatively fewer studies on the synchronization of coupled partial differential equations. In this research project, we plan to investigate the synchronization of coupled partial differential equations with reaction-diffusion terms and time delays, as well as other dynamic behaviors, including dissipation, stability and convergence. In particular, we hope that the theory developed in this project can be applied to more realistic biological models.
    Relation: 科技部, MOST107-2115-M004-003, 107.08-108.07
    Data Type: report
    Appears in Collections:[Department of Mathematical Sciences] NSC Projects

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML28View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback