Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/156062
|
Title: | 透過核心自我評價與社交連結探索生成式人工智慧依賴對工作投入之影響 Exploring the Impact of Generative Artificial Intelligence Dependence on Work Engagement via Core Self-Evaluation and Social Connectedness |
Authors: | 李振維 Lee, Chen-Wei |
Contributors: | 周致遠 Chou, Chih-Yuan 李振維 Lee, Chen-Wei |
Keywords: | 生成式人工智慧 生成式人工智慧依賴 核心自我評估 社交連結 工作投入 組織行為 工作資源-需求模型 Generative Artificial Intelligence GenAI dependence Core Self-evaluation Social Connectedness Work Engagement Organizational Behavior Job Demands- Resources Model |
Date: | 2024 |
Issue Date: | 2025-03-03 15:10:50 (UTC+8) |
Abstract: | 快速發展的生成式人工智慧(GenAI)和自動化技術已經改變了各行各業,引起了人力資源管理和資訊管理領域的關注。儘管 GenAI 工具提供了許多好處,但 它們的整合也帶來了一些挑戰。本研究探討了 GenAI 依賴、核心自我評價、社交 連結和工作投入之間的關係,重點在於 GenAI 的策略性應用以提高生產力及其 對於員工心理的影響。通過線上問卷調查收集來自各行業員工的數據,以評估 GenAI 依賴對工作投入的影響,並通過核心自我評價和社交連結進行調節。研究 結果顯示,儘管 GenAI 工具可以提高生產力,但過度依賴可能會減少社會互動,影響社交連結、協作、和思想交流,進而負面影響核心自我評價。另一方面,研究結果確認了在 GenAI 使用下個人資源和工作資源之間的衝突,強調了在 GenAI 效率與維持人際互動之間取得平衡的重要性。 有鑒於此, 研究提倡整合 GenAI 以支持以人為本的決策和創造力,並鼓勵企業提供全面的 GenAI 培訓,幫助員工適應其技術和心理影響。 The rapid advancements in generative artificial intelligence (GenAI) and automation technologies have transformed various industries, drawing attention from human resource and information management fields. Although GenAI tools offer numerous benefits, their integration presents challenges. This study explores the relationships between GenAI dependence, core self-evaluation, social connectedness, and work engagement, focusing on GenAI's strategic application to enhance productivity and its psychological impacts on employees. Data from employees across various industries were collected via online surveys to assess the influence of GenAI dependence on work engagement, mediated by core self-evaluation and social connectedness. The findings reveal that while GenAI tools enhance productivity, excessive reliance may reduce social interactions, impacting social connectedness, collaboration, and idea exchange, negatively affecting core self-evaluation. On the other hand, the results highlight the conflict between personal and job resources under GenAI use within the job demands- resources model, emphasizing the importance of balancing GenAI efficiency with maintaining interpersonal interactions. The study advocates for integrating GenAI to support human-centered decision-making and creativity and encourages organizations to provide comprehensive GenAI training to help employees adapt to its technical and psychological impacts. |
Reference: | [1] Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488–1542.
[2] Al-Yateem, N. (2012). The effect of interview recording on quality of data obtained: A methodological reflection. Nurse Researcher, 19(4), 31–35. https://doi.org/10.7748/nr2012.07.19.4.31.c9222
[3] AlAfnan, M. A., Dishari, S., Jovic, M., & Lomidze, K. (2023). ChatGPT as an educational tool: Opportunities, challenges, and recommendations for communication, business writing, and composition courses. Journal of Artificial Intelligence and Technology, 3(2), 60–68. https://doi.org/10.37965/jait.2023.0184
[4] Alarco, B. (2008). Conceptual and empirical similarities and differences between job insecurity and employability: A test in Peru. PhD thesis, KU Leuven. https://lirias.kuleuven.be/retrieve/121742
[5] Alkhateeb, M., Duné, E., & Akriem, E. (2023). The impact of AI on internal communication within an organization: A critical examination of AI adoption. Bachelor thesis, Mälardalen University. https://mdh.diva-portal.org/smash/record.jsf?pid=diva2%3A1761193
[6] Arantes, J. A. (2024). Redefining classroom readiness: How initial teacher training can mitigate risks and capitalize on the potential of GenAI. In Academic integrity in the age of artificial intelligence (pp. 78–92). IGI Global. https://www.igi-global.com/chapter/redefining-classroom-readiness/339220
[7] Armstrong, S., & Oomen-Early, J. (2009). Social connectedness, self-esteem, and depression symptomatology among collegiate athletes versus nonathletes. Journal of American College Health, 57(5), 521–526. https://doi.org/10.3200/JACH.57.5.521-526
[8] Aronoff, J., Stollak, G. E., & Woike, B. A. (1994). Affect regulation and the breadth of interpersonal engagement. Journal of Personality and Social Psychology, 67(1), 105–114. https://doi.org/10.1037/0022-3514.67.1.105
[9] Backes-Gellner, U., & Geel, R. (2014). A comparison of career success between graduates of vocational and academic tertiary education. Oxford Review of Education, 40(2), 266–291. https://doi.org/10.1080/03054985.2014.889602
[10] Bailey, J. (2023). AI in education: The leap into a new era of machine intelligence carries risks and challenges, but also plenty of promise. Education Next, 23(4), 29–36.
[11] Bakker, A. B., Albrecht, S. L., & Leiter, M. P. (2011). Key questions regarding work engagement. European Journal of Work and Organizational Psychology, 20(1), 4–28. https://doi.org/10.1080/1359432X.2010.485352
[12] Bakker, A. B., & de Vries, J. D. (2021). Job demands–resources theory and self-regulation: New explanations and remedies for job burnout. Anxiety, Stress, & Coping, 34(1), 1–21. https://doi.org/10.1080/10615806.2020.1797695
[13] Bakker, A. B., & Demerouti, E. (2007). The job demands–resources model: State of the art. Journal of Managerial Psychology, 22(3), 309–328. https://doi.org/10.1108/02683940710733115
[14] Bakker, A. B., & Demerouti, E. (2008). Towards a model of work engagement. Career Development International, 13(3), 209–223.
[15] Bakker, A. B., Demerouti, E., Taris, T. W., Schaufeli, W. B., & Schreurs, P. J. G. (2003). A multigroup analysis of the job demands-resources model in four home care organizations. International Journal of Stress Management, 10(1), 16–38. https://doi.org/10.1037/1072-5245.10.1.16
[16] Bakker, A. B., Schaufeli, W. B., Leiter, M. P., & Taris, T. W. (2008). Work engagement: An emerging concept in occupational health psychology. Work & Stress, 22(3), 187–200. https://doi.org/10.1080/02678370802393649
[17] Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. https://doi.org/10.1037/0003-066X.37.2.122
[18] Bang, J., & Park, G. (2023). Uprising of ChatGPT and ethical problems. Robotics & AI Ethics, 8(2), 1–8. https://doi.org/10.52984/jae.2023.8.2.1
[19] Schaufeli, W. B., & Taris, T. W. (2014). A critical review of the job demands-resources model: Implications for improving work and health. In G. F. Bauer & O. Hämmig (Eds.), Bridging occupational, organizational and public health: A transdisciplinary approach (pp. 43–68). Springer Science + Business Media. https://doi.org/10.1007/978-94-007-5640-3_4
[20] Baumeister, R. F., & Leary, M. R. (2017). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. In R. Zukauskiene (Ed.), Interpersonal Development (pp. 57–89). Routledge. https://www.taylorfrancis.com/chapters/edit/10.4324/9781351153683-3/need-belong-desire-interpersonal-attachments-fundamental-human-motivation-roy-baumeister-mark-leary
[21] Berman, E. M., West, J. P., & Richter, M. N., Jr. (2002). Workplace relations: Friendship patterns and consequences (according to managers). Public Administration Review, 62(2), 217–230. https://doi.org/10.1111/0033-3352.00172
[22] Bipp, T., Kleingeld, A., & Ebert, T. (2019). Core self-evaluations as a personal resource at work for motivation and health. Personality and Individual Differences, 151, 109556. https://doi.org/10.1016/j.paid.2019.109556
[23] Black, S. E., & Lynch, L. M. (2001). How to compete: The impact of workplace practices and information technology on productivity. Review of Economics and Statistics, 83(3), 434–445. https://doi.org/10.1162/00346530152480081
[24] Braganza, A., Chen, W., Canhoto, A., & Sap, S. (2022). Gigification, job engagement and satisfaction: The moderating role of AI enabled system automation in operations management. Production Planning & Control, 33(16), 1534–1547. https://doi.org/10.1080/09537287.2021.1882692
[25] Bright, J., Enock, F. E., Esnaashari, S., Francis, J., Hashem, Y., & Morgan, D. (2025). Generative AI is already widespread in the public sector: Evidence from a survey of UK public sector professionals. Digital Government: Research and Practice, 6(1), 1–13. https://doi.org/10.1145/3700140
[26] Brown, J. D. (1993). Self-esteem and self-evaluation: Feeling is believing. In J. Suls (Ed.), Psychological perspectives on the self (Vol. 4, pp. 27–58). Erlbaum.
[27] Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company.
[28] Cacioppo, J. T., & Hawkley, L. C. (2009). Perceived social isolation and cognition. Trends in Cognitive Sciences, 13(10), 447–454. https://doi.org/10.1016/j.tics.2009.06.005
[29] Cao, L. (2022). AI in finance: Challenges, techniques, and opportunities. ACM Computing Surveys, 55(3), 1–38. https://doi.org/10.1145/3502289
[30] Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2025). A survey of AI-generated content (AIGC). ACM Computing Surveys, 57(5), 1–38. https://doi.org/10.1145/3704262
[31] Caporusso, N. (2023). Generative artificial intelligence and the emergence of creative displacement anxiety. Research Directs in Psychology and Behavior, 3(1). https://doi.org/10.53520/rdpb2023.10795
[32] Carter, M., & Grover, V. (2015). Me, my self, and I(T): Conceptualizing information technology identity and its implications. MIS Quarterly, 39(4), 931–958. https://doi.org/10.25300/MISQ/2015/39.4.9
[33] Cernas-Ortiz, D. A., & Wai-Kwan, L. (2021). Social connectedness and job satisfaction in Mexican teleworkers during the pandemic: The mediating role of affective well-being. Estudios Gerenciales, 37(158), 37–48. https://doi.org/10.18046/j.estger.2021.158.4322
[34] Chan, C. K. Y., & Zhou, W. (2023). Deconstructing student perceptions of generative AI (GenAI) through an expectancy value theory (EVT)-based instrument. arXiv Preprint, arXiv:2305.01186. https://doi.org/10.48550/arXiv.2305.01186
[35] Chang, C.-H., Ferris, D. L., Johnson, R. E., Rosen, C. C., & Tan, J. A. (2012). Core self-evaluations: A review and evaluation of the literature. Journal of Management, 38(1), 81–128. https://doi.org/10.1177/0149206311419661
[36] Chang, K. (2020). Artificial intelligence in personnel management: The development of APM model. The Bottom Line, 33(4), 377–388. https://doi.org/10.1108/BL-08-2020-0055
[37] Chaturvedi, M., & Chander, R. (2010). Development of emotional stability scale. Industrial Psychiatry Journal, 19(1), 37–40. https://doi.org/10.4103/0972-6748.77634
[38] Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational Research Methods, 4(1), 62–83. https://doi.org/10.1177/109442810141004
[39] Cheng, K.-T., Chang, K., & Tai, H.-W. (2022). AI boosts performance but affects employee emotions. Information Resources Management Journal, 35(1), 1–18. https://doi.org/10.4018/irmj.314220
[40] Chesley, N. (2005). Blurring boundaries? Linking technology use, spillover, individual distress, and family satisfaction. Journal of Marriage and Family, 67(5), 1237–1248. https://doi.org/10.1111/j.1741-3737.2005.00213.x
[41] Chiang, Y.-H., Hsu, C.-C., & Hung, K.-P. (2014). Core self-evaluation and workplace creativity. Journal of Business Research, 67(7), 1405–1413. https://doi.org/10.1016/j.jbusres.2013.08.012
[42] Chiu, T. K. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 6, 100197. https://doi.org/10.1016/j.caeai.2023.100197
[43] Chui, M., Manyika, J., & Miremadi, M. (2016). Where machines could replace humans—and where they can't (yet). McKinsey Quarterly. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/where-machines-could-replace-humans-and-where-they-cant-yet
[44] Coopersmith, S. (1967). The antecedents of self-esteem. W. H. Freeman.
[45] Corso-de-Zúñiga, S., Moreno-Jiménez, B., Garrosa, E., Blanco-Donoso, L. M., & Carmona-Cobo, I. (2020). Personal resources and personal vulnerability factors at work: An application of the Job Demands-Resources model among teachers at private schools in Peru. Current Psychology, 39(1), 325–336. https://doi.org/10.1007/s12144-017-9766-6
[46] Craig, K., Thatcher, J. B., & Grover, V. (2019). The IT identity threat: A conceptual definition and operational measure. Journal of Management Information Systems, 36(1), 259–288. https://doi.org/10.1080/07421222.2018.1550561
[47] Danaher, J., & Nyholm, S. (2021). Automation, work and the achievement gap. AI and Ethics, 1(3), 227–237. https://doi.org/10.1007/s43681-020-00028-x
[48] Demetriou, A., Kazi, S., Makris, N., & Spanoudis, G. (2020). Cognitive ability, cognitive self-awareness, and school performance: From childhood to adolescence. Intelligence, 79, 101432. https://doi.org/10.1016/j.intell.2020.101432
[49] Dhoni, P. (2023). Unleashing the potential: Overcoming hurdles and embracing generative AI in IT workplaces: Advantages, guidelines, and policies. Authorea Preprints. https://doi.org/10.36227/techrxiv.23696709.v1
[50] Dicke, T., Stebner, F., Linninger, C., Kunter, M., & Leutner, D. (2018). A longitudinal study of teachers' occupational well-being: Applying the job demands-resources model. Journal of Occupational Health Psychology, 23(2), 262–277. https://doi.org/10.1037/ocp0000070
[51] Du-Harpur, X., Watt, F. M., Luscombe, N. M., & Lynch, M. D. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423–430. https://doi.org/10.1111/bjd.18880
[52] Einarsen, S., Skogstad, A., Rørvik, E., Lande, Å. B., & Nielsen, M. B. (2018). Climate for conflict management, exposure to workplace bullying and work engagement: A moderated mediation analysis. The International Journal of Human Resource Management, 29(3), 549–570. https://doi.org/10.1080/09585192.2016.1164216
[53] Ekin, S. (2023). Prompt engineering for ChatGPT: A quick guide to techniques, tips, and best practices. Authorea Preprints. https://doi.org/10.36227/techrxiv.22683919
[54] Elliott, K.-E. J., Stirling, C. M., Martin, A. J., Robinson, A. L., & Scott, J. L. (2013). Perspectives of the community-based dementia care workforce: "Occupational communion" a key finding from the Work 4 Dementia Project. International Psychogeriatrics, 25(5), 765–774. https://doi.org/10.1017/S1041610212002323
[55] Evans, J. R., & Mathur, A. (2005). The value of online surveys. Internet Research, 15(2), 195–219. https://doi.org/10.1108/10662240510590360
[56] Fallows, S., & Weller, G. (2000). Transition from student to employee: A work-based programme for 'graduate apprentices' in small to medium enterprises. Journal of Vocational Education and Training, 52(4), 665–685. https://doi.org/10.1080/13636820000200143
[57] Fan, L., Liu, X., Wang, B., & Wang, L. (2017). Interactivity, engagement, and technology dependence: Understanding users' technology utilisation behaviour. Behaviour & Information Technology, 36(2), 113–124. https://doi.org/10.1080/0144929X.2016.1199051
[58] Ferris, D. L., Johnson, R. E., Rosen, C. C., Djurdjevic, E., Chang, C.-H. D., & Tan, J. A. (2013). When is success not satisfying? Integrating regulatory focus and approach/avoidance motivation theories to explain the relation between core self-evaluation and job satisfaction. Journal of Applied Psychology, 98(2), 342–353. https://doi.org/10.1037/a0029776
[59] Ferris, D. L., Rosen, C. R., Johnson, R. E., Brown, D. J., Risavy, S. D., & Heller, D. (2011). Approach or avoidance (or both?): Integrating core self-evaluations within an approach/avoidance framework. Personnel Psychology, 64(1), 137–161. https://doi.org/10.1111/j.1744-6570.2010.01204.x
[60] Festinger, L. (1954). A theory of social comparison processes. Human Relations, 7(2), 117–140. https://doi.org/10.1177/001872675400700202
[61] Formica, S., & Sfodera, F. (2022). The Great Resignation and Quiet Quitting paradigm shifts: An overview of current situation and future research directions. Journal of Hospitality Marketing & Management, 31(8), 899–907. https://doi.org/10.1080/19368623.2022.2136601 [62] Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
[63] Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277–304. https://doi.org/10.1080/15228053.2023.2233814
[64] Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. Journal of Business Research, 69(8), 3192–3198. https://doi.org/10.1016/j.jbusres.2015.12.008
[65] García-Peñalvo, F. J., & Vázquez-Ingelmo, A. (2023). What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7–13. https://doi.org/10.9781/ijimai.2023.07.006
[66] Giray, L., Jacob, J., & Gumalin, D. L. (2024). Strengths, weaknesses, opportunities, and threats of using ChatGPT in scientific research. International Journal of Technology in Education, 7(1), 40–58. https://doi.org/10.46328/ijte.618
[67] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 3(11), 2672–2680. https://doi.org/10.1145/3422622
[68] Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213–236. https://doi.org/10.2307/249689
[69] Govori, A., & Sejdija, Q. (2023). Future prospects and challenges of integrating artificial intelligence within the business practices of small and medium enterprises. Journal of Governance and Regulation, 12(2), 176–183. https://doi.org/10.22495/jgrv12i2art16
[70] Grieve, R., Indian, M., Witteveen, K., Tolan, G. A., & Marrington, J. (2013). Face-to-face or Facebook: Can social connectedness be derived online? Computers in Human Behavior, 29(3), 604–609. https://doi.org/10.1016/j.chb.2012.11.017
[71] Grieve, R., & Kemp, N. (2015). Individual differences predicting social connectedness derived from Facebook: Some unexpected findings. Computers in Human Behavior, 51, 239–243. https://doi.org/10.1016/j.chb.2015.04.034
[72] Haase, H., & Lautenschläger, A. (2011). Career choice motivations of university students. International Journal of Business Administration, 2(1), 2–13. https://doi.org/10.5430/ijba.v2n1p2
[73] Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202
[74] Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
[75] Halbesleben, J. R. B. (2010). A meta-analysis of work engagement: Relationships with burnout, demands, resources, and consequences. In A. B. Bakker & M. P. Leiter (Eds.), Work engagement: A handbook of essential theory and research (pp. 102–117). Psychology Press.
[76] Harter, J. K., Schmidt, F. L., & Hayes, T. L. (2002). Business-unit-level relationship between employee satisfaction, employee engagement, and business outcomes: A meta-analysis. Journal of Applied Psychology, 87(2), 268–279. https://doi.org/10.1037/0021-9010.87.2.268
[77] Haslam, C., Cruwys, T., Haslam, S. A., & Jetten, J. (2015). Social connectedness and health. In N. Pachana (Ed.), Encyclopedia of geropsychology (pp. 1–10). Springer. https://doi.org/10.1007/978-981-287-080-3_46-1
[78] Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., & Mac Feely, S. (2020). Artificial intelligence (AI) or intelligence augmentation (IA): What is the future? AI, 1(2), 143–155. https://doi.org/10.3390/ai1020008
[79] Hlado, P., & Harvankova, K. (2024). Teachers’ perceived work ability: A qualitative exploration using the Job Demands-Resources model. Humanities and Social Sciences Communications, 11(1), 1–10. https://doi.org/10.1057/s41599-024-02811-1
[80] Holt-Lunstad, J. (2018). Fostering social connection in the workplace. American Journal of Health Promotion, 32(5), 1307–1312. https://doi.org/10.1177/0890117118776735a
[81] Hou, D., Liu, T., Pan, Y.-T., & Hou, J. (2019). AI on edge device for laser chip defect detection. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0247–0251). IEEE. https://doi.org/10.1109/CCWC.2019.8666503
[82] Hu, B., Mao, Y., & Kim, K. J. (2023). How social anxiety leads to problematic use of conversational AI: The roles of loneliness, rumination, and mind perception. Computers in Human Behavior, 145, Article 107760. https://doi.org/10.1016/j.chb.2023.107760
[83] Hung, W. (2014). Intrinsic and extrinsic intentional learning: The difference made by self-determination. Australian Journal of Education, 58(1), 50–58. https://doi.org/10.1177/0004944113517832
[84] Jehn, K. A., & Shah, P. P. (1997). Interpersonal relationships and task performance: An examination of mediation processes in friendship and acquaintance groups. Journal of Personality and Social Psychology, 72(4), 775–790. https://doi.org/10.1037/0022-3514.72.4.775
[85] Jetten, J., Haslam, S. A., Cruwys, T., Greenaway, K. H., Haslam, C., & Steffens, N. K. (2017). Advancing the social identity approach to health and well-being: Progressing the social cure research agenda. European Journal of Social Psychology, 47(7), 789–802. https://doi.org/10.1002/ejsp.2333
[86] Johnson, R. E., Rosen, C. C., & Levy, P. E. (2008). Getting to the core of core self-evaluations: A review and recommendations. Journal of Organizational Behavior, 29(3), 391–413. https://doi.org/10.1002/job.514
[87] Judge, T. A. (1997). The dispositional causes of job satisfaction: A core evaluations approach. Research in Organizational Behavior, 19, 151-188.
[88] Judge, T. A., & Bono, J. E. (2001). Relationship of core self-evaluations traits—self-esteem, generalized self-efficacy, locus of control, and emotional stability—with job satisfaction and job performance: A meta-analysis. Journal of Applied Psychology, 86(1), 80–92. https://doi.org/10.1037/0021-9010.86.1.80
[89] Judge, T. A., Bono, J. E., Erez, A., & Locke, E. A. (2005). Core self-evaluations and job and life satisfaction: The role of self-concordance and goal attainment. Journal of Applied Psychology, 90(2), 257–268. https://doi.org/10.1037/0021-9010.90.2.257
[90] Judge, T. A., Bono, J. E., & Locke, E. A. (2000). Personality and job satisfaction: The mediating role of job characteristics. Journal of Applied Psychology, 85(2), 237–249. https://doi.org/10.1037/0021-9010.85.2.237
[91] Judge, T. A., Erez, A., Bono, J. E., & Thoresen, C. J. (2003). The core self-evaluations scale: Development of a measure. Personnel Psychology, 56(2), 303–331. https://doi.org/10.1111/j.1744-6570.2003.tb00152.x
[92] Judge, T. A., Locke, E. A., Durham, C. C., & Kluger, A. N. (1998). Dispositional effects on job and life satisfaction: The role of core evaluations. Journal of Applied Psychology, 83(1), 17–34. https://doi.org/10.1037/0021-9010.83.1.17
[93] Kalimeri, K., & Tjøstheim, I. (2020). Artificial intelligence and concerns about the future: A case study in Norway. In Proceedings of the 22nd International Conference on Human-Computer Interaction (pp. 1–10). Springer. https://doi.org/10.1007/978-3-030-50344-4_20
[94] Kanbach, D. K., Heiduk, L., Blüher, G., Schreiter, M., & Lahmann, A. (2023). The GenAI is out of the bottle: Generative artificial intelligence from a business model innovation perspective. Review of Managerial Science, 1–32. https://doi.org/10.1007/s11846-023-00696-z
[95] Karatepe, O. M., Keshavarz, S., & Nejati, S. (2010). Do core self-evaluations mediate the effect of coworker support on work engagement? A study of hotel employees in Iran. Journal of Hospitality and Tourism Management, 17(1), 62–71. https://doi.org/10.1375/jhtm.17.1.62
[96] Karr-Wisniewski, P., & Lu, Y. (2010). When more is too much: Operationalizing technology overload and exploring its impact on knowledge worker productivity. Computers in Human Behavior, 26(5), 1061–1072. https://doi.org/10.1016/j.chb.2010.03.008
[97] Kim, M., & Beehr, T. A. (2018). Challenge and hindrance demands lead to employees' health and behaviors through intrinsic motivation. Stress and Health, 34(3), 367–378. https://doi.org/10.1002/smi.2796
[98] Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv preprint arXiv:1312.6114. https://doi.org/10.48550/arXiv.1312.6114
[99] Kraut, R., Patterson, M., Lundmark, V., Kiesler, S., Mukophadhyay, T., & Scherlis, W. (1998). Internet paradox: A social technology that reduces social involvement and psychological well-being? American Psychologist, 53(9), 1017–1031. https://doi.org/10.1037/0003-066X.53.9.1017
[100] Kügler, M., Dittes, S., Smolnik, S., & Richter, A. (2015). Connect me! Antecedents and impact of social connectedness in enterprise social software. Business & Information Systems Engineering, 57(3), 181–196. https://doi.org/10.1007/s12599-015-0379-z
[101] Laestadius, L., Bishop, A., Gonzalez, M., Illenčík, D., & Campos-Castillo, C. (2022). Too human and not human enough: A grounded theory analysis of mental health harms from emotional dependence on the social chatbot Replika. New Media & Society, 26(10). https://doi.org/10.1177/14614448221142007
[102] Lee, R. M., & Robbins, S. B. (1995). Measuring belongingness: The social connectedness and the social assurance scales. Journal of Counseling Psychology, 42(2), 232–241. https://doi.org/10.1037/0022-0167.42.2.232
[103] Lee, R. M., & Robbins, S. B. (1998). The relationship between social connectedness and anxiety, self-esteem, and social identity. Journal of Counseling Psychology, 45(3), 338–345. https://doi.org/10.1037/0022-0167.45.3.338
[104] Li, C., Zhang, C., Waghwase, A., Lee, L.-H., Rameau, F., Yang, Y., Bae, S.-H., & Hong, C. S. (2023). Generative AI meets 3D: A survey on text-to-3D in the AIGC era. arXiv preprint arXiv:2305.06131. https://doi.org/10.48550/arXiv.2305.06131
[105] Liu, J. (2022). Exploring the dynamic self-assessment process of students across different competency groups. Studies in Educational Evaluation, 75(87). https://doi.org/10.1016/j.stueduc.2022.101215
[106] Lyon, T. A. (2015). Self-compassion as a predictor of loneliness: The relationship between self-evaluation processes and perceptions of social connection. Southeastern University Honors Theses. https://firescholars.seu.edu/honors/37
[107] Maciel, C. d. O., & Camargo, C. (2016). Social connection in organizations: The effects of local ties on job engagement and performance. Revista de Administração (São Paulo), 51(4), 377–385. https://doi.org/10.1016/j.rausp.2016.07.005
[108] Mäkiniemi, J.-P., Oksanen, A., & Mäkikangas, A. (2021). Loneliness and well-being during the COVID-19 pandemic: The moderating roles of personal, social, and organizational resources on perceived stress and exhaustion among Finnish university employees. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18137146
[109] Malik, A., Islam, S. U., Aleem, M., & Tariq, N. (2022). An empirical investigation of technostress due to technological factors and its impact on employee engagement. Journal of Positive School Psychology, 6(2), 6562–6582. https://journalppw.com/index.php/jpsp/article/view/12821
[110] Maslow, A. H. (1958). A dynamic theory of human motivation. In C. L. Stacey & M. DeMartino (Eds.), Understanding human motivation (pp. 26–47). Howard Allen Publishers. https://doi.org/10.1037/11305-004
[120] Ni, C., & Wang, Y. (2015). The impact of perceived organizational support and core self-evaluation on employee’s psychological well-being. Journal of Human Resource and Sustainability Studies, 3(2), 73–81. https://doi.org/10.4236/jhrss.2015.32011
[121] Norman, A. A., Marzuki, A. H., Faith, F., Hamid, S., Ghani, N. A., Ravana, S. D., & Arshad, N. I. (2023). Technology dependency and impact during COVID-19: A systematic literature review and open challenges. IEEE Access, 11, 40741–40760. https://doi.org/10.1109/ACCESS.2023.3250770
[122] Nuutinen, S., Ahola, S., Eskelinen, J., & Kuula, M. (2021). How job resources influence employee productivity and technology-enabled performance in financial services: The job demands–resources model perspective. Journal of Organizational Effectiveness: People and Performance, 9(2), 233–252. https://doi.org/10.1108/JOEPP-01-2021-0014
[123] O’Neill, E., Clarke, P., Fido, D., & Vione, K. C. (2022). The role of future time perspective, body awareness, and social connectedness in the relationship between self-efficacy and resilience. International Journal of Mental Health and Addiction, 20(2), 1171–1181. https://doi.org/10.1007/s11469-020-00434-6
[124] Oxford Analytica. (2023). GenAI will transform workplace tasks across industries. Expert Briefings. https://doi.org/10.1108/OXAN-DB279960
[125] Pandita, D., & Ray, S. (2018). Talent management and employee engagement—a meta-analysis of their impact on talent retention. Industrial and Commercial Training, 50(4), 185–199. https://doi.org/10.1108/ICT-09-2017-0073
[126] Parsakia, K. (2023). The effect of chatbots and AI on the self-efficacy, self-esteem, problem-solving, and critical thinking of students. Health Nexus, 1(1), 71–76. https://doi.org/10.61838/kman.hn.1.1.11
[127] Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls, and future research agenda. International Journal of Consumer Studies, 47(4), 1213–1225. https://doi.org/10.1111/ijcs.12928
[128] Peng, J., Li, D., Zhang, Z., Tian, Y., Miao, D., Xiao, W., & Zhang, J. (2016). How can core self-evaluations influence job burnout? The key roles of organizational commitment and job satisfaction. Journal of Health Psychology, 21(1), 50–59. https://doi.org/10.1177/1359105314521478
[129] Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100857 [111] Mauno, S., Kinnunen, U., & Ruokolainen, M. (2007). Job demands and resources as antecedents of work engagement: A longitudinal study. Journal of Vocational Behavior, 70(1), 149–171. https://doi.org/10.1016/j.jvb.2006.09.002
[112] McDonald, N., Johri, A., Ali, A., & Collier, A. H. (2025). Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. Computers in Human Behavior: Artificial Humans, 3, 100121. https://doi.org/10.1016/j.chbah.2025.100121
[113] Miklošík, A., & Daňo, F. (2016). Search engine optimisation and Google Answer Box. Communication Today, 7(1), 82–91.
[114] Miller, I. J. (1992). Interpersonal vulnerability and narcissism: A conceptual continuum for understanding and treating narcissistic psychopathology. Psychotherapy: Theory, Research, Practice, Training, 29(2), 216–224. https://doi.org/10.1037/0033-3204.29.2.216
[115] Mirbabaie, M., Brünker, F., Möllmann Frick, N. R. J., & Stieglitz, S. (2022). The rise of artificial intelligence – understanding the AI identity threat at the workplace. Electronic Markets, 32(1), 73–99. https://doi.org/10.1007/s12525-021-00496-x
[116] Mohamed, A. M. (2023). Exploring the potential of an AI-based chatbot (ChatGPT) in enhancing English as a Foreign Language (EFL) teaching: Perceptions of EFL faculty members. Education and Information Technologies, 29(3), 3195–3217. https://doi.org/10.1007/s10639-023-11917-z
[117] Morrison, E. W. (2002). Newcomers' relationships: The role of social network ties during socialization. Academy of Management Journal, 45(6), 1149–1160. https://doi.org/10.2307/3069430
[118] Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277–304. https://doi.org/10.1080/15228053.2023.2233814
[119] Nguyen, T. T., Wilson, C., & Dalins, J. (2023). Fine-tuning Llama 2 large language models for detecting online sexual predatory chats and abusive texts. arXiv preprint arXiv:2308.14683. https://doi.org/10.48550/arXiv.2308.14683
[120] Ni, C., & Wang, Y. (2015). The impact of perceived organizational support and core self-evaluation on employee’s psychological well-being. Journal of Human Resource and Sustainability Studies, 3(2), 73–81. https://doi.org/10.4236/jhrss.2015.32011
[121] Norman, A. A., Marzuki, A. H., Faith, F., Hamid, S., Ghani, N. A., Ravana, S. D., & Arshad, N. I. (2023). Technology dependency and impact during COVID-19: A systematic literature review and open challenges. IEEE Access, 11, 40741–40760. https://doi.org/10.1109/ACCESS.2023.3250770
[122] Nuutinen, S., Ahola, S., Eskelinen, J., & Kuula, M. (2021). How job resources influence employee productivity and technology-enabled performance in financial services: The job demands–resources model perspective. Journal of Organizational Effectiveness: People and Performance, 9(2), 233–252. https://doi.org/10.1108/JOEPP-01-2021-0014
[123] O’Neill, E., Clarke, P., Fido, D., & Vione, K. C. (2022). The role of future time perspective, body awareness, and social connectedness in the relationship between self-efficacy and resilience. International Journal of Mental Health and Addiction, 20(2), 1171–1181. https://doi.org/10.1007/s11469-020-00434-6
[124] Oxford Analytica. (2023). GenAI will transform workplace tasks across industries. Expert Briefings. https://doi.org/10.1108/OXAN-DB279960
[125] Pandita, D., & Ray, S. (2018). Talent management and employee engagement—a meta-analysis of their impact on talent retention. Industrial and Commercial Training, 50(4), 185–199. https://doi.org/10.1108/ICT-09-2017-0073
[126] Parsakia, K. (2023). The effect of chatbots and AI on the self-efficacy, self-esteem, problem-solving, and critical thinking of students. Health Nexus, 1(1), 71–76. https://doi.org/10.61838/kman.hn.1.1.11
[127] Paul, J., Ueno, A., & Dennis, C. (2023). ChatGPT and consumers: Benefits, pitfalls, and future research agenda. International Journal of Consumer Studies, 47(4), 1213–1225. https://doi.org/10.1111/ijcs.12928
[128] Peng, J., Li, D., Zhang, Z., Tian, Y., Miao, D., Xiao, W., & Zhang, J. (2016). How can core self-evaluations influence job burnout? The key roles of organizational commitment and job satisfaction. Journal of Health Psychology, 21(1), 50–59. https://doi.org/10.1177/1359105314521478
[129] Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100857
[130] Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879
[131] Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T., & Luxton-Reilly, A. (2023). The robots are here: Navigating the generative AI revolution in computing education. In Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education (pp. 108–159). ACM. https://doi.org/10.1145/3623762.3633499
[132] Prins, J. T., Van Der Heijden, F. M. M. A., Hoekstra-Weebers, J. E. H. M., Bakker, A. B., Van de Wiel, H. B. M., Jacobs, B., & Gazendam-Donofrio, S. M. (2009). Burnout, engagement and resident physicians' self-reported errors. Psychology, Health & Medicine, 14(6), 654–666. https://doi.org/10.1080/13548500903311554
[133] Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and artificial intelligence: An experiential perspective. Journal of Marketing, 85(1), 131–151. https://doi.org/10.1177/0022242920953847
[134] Raišienė, A. G., & Jonušauskas, S. (2013). Silent issues of ICT era: Impact of techno-stress on the work and life balance of employees. Entrepreneurship and Sustainability Issues, 1(2), 108–115. https://doi.org/10.9770/jesi.2013.1.2(5)
[135] Raj J, A. S. (2024). GenAI and the future of education and research. SSRN. https://doi.org/10.2139/ssrn.4686338
[136] Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & Sutskever, I. (2021). Zero-shot text-to-image generation. In Proceedings of the 38th International Conference on Machine Learning (pp. 8821–8831). PMLR. https://proceedings.mlr.press/v139/ramesh21a.html
[137] Rath, T., & Harter, J. K. (2010). Wellbeing: The five essential elements. Simon & Schuster.
[138] Rich, B. L., Lepine, J. A., & Crawford, E. R. (2010). Job engagement: Antecedents and effects on job performance. Academy of Management Journal, 53(3), 617–635. https://doi.org/10.5465/amj.2010.51468988
[139] Riedl, M. O. (2019). Human-centered artificial intelligence and machine learning. Human Behavior and Emerging Technologies, 1(1), 33–36. https://doi.org/10.1002/hbe2.117
[140] Robledo, D. A. R., Zara, C. G., Montalbo, S. M., Gayeta, N. E., Gonzales, A. L., Escarez, M. G. A., & Maalihan, E. D. (2023). Development and validation of a survey instrument on knowledge, attitude, and practices (KAP) regarding the educational use of ChatGPT among preservice teachers in the Philippines. International Journal of Information and Education Technology, 13(10), 1582–1590. https://doi.org/10.18178/ijiet.2023.13.10.1965
[141] Rohden, S. F., & Espartel, L. B. (2024). Consumer reactions to technology in retail: Choice uncertainty and reduced perceived control in decisions assisted by recommendation agents. Electronic Commerce Research, 24(2), 901–923. https://doi.org/10.1007/s10660-024-09808-7
[142] Rosa, A., Bento, T., Pereira, L., da Costa, R. L., Dias, Á., & Gonçalves, R. (2022). Gaining competitive advantage through artificial intelligence adoption. International Journal of Electronic Business, 17(4), 386–406. https://doi.org/10.1504/ijeb.2022.126263
[143] Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), Article 11524. https://doi.org/10.3390/su151511524
[144] Sætra, H. S. (2023). Generative AI: Here to stay, but for good? Technology in Society, 75, 102372. https://doi.org/10.1016/j.techsoc.2023.102372
[145] Sandoval, E. B. (2019). Addiction to social robots: A research proposal. In Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction (pp. 526–527). IEEE. https://doi.org/10.1109/HRI.2019.8673143
[146] Satici, S. A., Uysal, R., & Deniz, M. E. (2016). Linking social connectedness to loneliness: The mediating role of subjective happiness. Personality and Individual Differences, 97, 306–310. https://doi.org/10.1016/j.paid.2015.11.035
[147] Schaufeli, W. B., & Salanova, M. (2011). Work engagement: On how to better catch a slippery concept. European Journal of Work and Organizational Psychology, 20(1), 39–46. https://doi.org/10.1080/1359432X.2010.515981
[148] Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293–315. https://doi.org/10.1002/job.248
[149] Schaufeli, W. B., & Bakker, A. B. (2010). Defining and measuring work engagement: Bringing clarity to the concept. In A. B. Bakker & M. P. Leiter (Eds.), Work engagement: A handbook of essential theory and research (pp. 10–24). Psychology Press.
[150] Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71–92. https://doi.org/10.1023/A:1015630930326
[151] Scheyett, A. (2023). Quiet quitting. Social Work, 68(1), 5–7. https://doi.org/10.1093/sw/swac051
[152] Schmid, Y., & Dowling, M. (2022). New work: New motivation? A comprehensive literature review on the impact of workplace technologies. Management Review Quarterly, 72(1), 59–86. https://doi.org/10.1007/s11301-020-00204-7
[153] Scholer, A. A., Ozaki, Y., & Higgins, E. T. (2014). Inflating and deflating the self: Sustaining motivational concerns through self-evaluation. Journal of Experimental Social Psychology, 51, 60–73. https://doi.org/10.1016/j.jesp.2013.11.008
[154] Sedikides, C., & Strube, M. J. (1997). Self-evaluation: To thine own self be good, to thine own self be sure, to thine own self be true, and to thine own self be better. In M. P. Zanna (Ed.), Advances in Experimental Social Psychology (Vol. 29, pp. 209–269). Academic Press. https://doi.org/10.1016/S0065-2601(08)60018-0
[155] Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2024). HuggingGPT: Solving AI tasks with ChatGPT and its friends in Hugging Face. Advances in Neural Information Processing Systems, 36. https://doi.org/10.48550/arXiv.2303.17580
[156] Sheykhshabani, S. H. (2011). Validity and reliability of core self-evaluations scale in Iranian employees. Procedia - Social and Behavioral Sciences, 15, 1561–1565. https://doi.org/10.1016/j.sbspro.2011.03.331
[157] Shklovski, I., Kraut, R., & Cummings, J. (2008). Keeping in touch by technology: Maintaining friendships after a residential move. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 807–816). ACM. https://doi.org/10.1145/1357054.1357182
[158] Simendinger, T., & Stibe, A. (2016). How increasing technology reliance is influencing behaviors and happiness. In Proceedings of the Empowering Cities for Sustainable Wellbeing (ECSW) workshop, adjunct to the 11th International Conference on Persuasive Technology (pp. 42–45). CEUR-WS. http://ceur-ws.org/Vol-1817/paper8.pdf
[159] Spector, P. E., & O'Connell, B. J. (1994). The contribution of personality traits, negative affectivity, locus of control and Type A to the subsequent reports of job stressors and job strains. Journal of Occupational and Organizational Psychology, 67(1), 1–12. https://doi.org/10.1111/j.2044-8325.1994.tb00545.x
[160] Stumpp, T., Hülsheger, U. R., Muck, P. M., & Maier, G. W. (2009). Expanding the link between core self-evaluations and affective job attitudes. European Journal of Work and Organizational Psychology, 18(2), 148–166. https://doi.org/10.1080/13594320802281110
[161] Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd
[162] Taylor, S. E., Neter, E., & Wayment, H. A. (1995). Self-evaluation processes. Personality and Social Psychology Bulletin, 21(12), 1278–1287. https://doi.org/10.1177/01461672952112005
[163] Tesser, A. (1988). Toward a self-evaluation maintenance model of social behavior. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (Vol. 21, pp. 181–227). Academic Press. https://doi.org/10.1016/S0065-2601(08)60227-0
[164] Tesser, A. (1991). Social versus clinical approaches to self psychology: The self-evaluation maintenance model and Kohutian object relations theory. In R. C. Curtis (Ed.), The relational self: Theoretical convergences in psychoanalysis and social psychology (pp. 257–281). The Guilford Press.
[165] Tyser, M. P., McCrea, S. M., & Knüpfer, K. (2012). Pursuing perfection or pursuing protection? Self-evaluation motives moderate the behavioral consequences of counterfactual thoughts. European Journal of Social Psychology, 42(3), 372–382. https://doi.org/10.1002/ejsp.1864
[166] Van Bel, D. T., Smolders, K. C. H. J., IJsselsteijn, W. A., & De Kort, Y. A. W. (2009). Social connectedness: Concept and measurement. In V. Callaghan, A. Kameas, A. Reyes, D. Royo, & M. Weber (Eds.), Intelligent Environments 2009: Proceedings of the 5th International Conference on Intelligent Environments (pp. 67–74). IOS Press. https://doi.org/10.3233/978-1-60750-034-6-67
[167] Van der Borg, W. E., Verdonk, P., Dauwerse, L., & Abma, T. A. (2017). Work-related change in residential elderly care: Trust, space and connectedness. Human Relations, 70(7), 805–835. https://doi.org/10.1177/0018726716684199
[168] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008. https://doi.org/10.48550/arXiv.1706.03762
[169] Wach, K., Duong, C. D., Ejdys, J., Kazlauskaitė, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7–24. https://doi.org/10.15678/EBER.2023.110201
[170] Walkowiak, E., & MacDonald, T. (2023). Generative AI and the workforce: What are the risks? SSRN. https://doi.org/10.2139/ssrn.4568684
[171] Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893–1924. https://doi.org/10.1108/BPMJ-10-2019-0411
[172] Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman, B., Shi, Y., & Wang, Q. (2020). From human-human collaboration to human-AI collaboration: Designing AI systems that can work together with people. Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 1–6. https://doi.org/10.1145/3334480.3381069
[173] Wang, X., Wong, Y. D., Liu, F., & Yuen, K. F. (2021). A push–pull–mooring view on technology-dependent shopping under social distancing: When technology needs meet health concerns. Technological Forecasting and Social Change, 173, 121109. https://doi.org/10.1016/j.techfore.2021.121109
[174] Washington, J. (2023). The impact of generative artificial intelligence on writer's self-efficacy: A critical literature review. SSRN. https://doi.org/10.2139/ssrn.4538043
[175] Williams, K. L., & Galliher, R. V. (2006). Predicting depression and self–esteem from social connectedness, support, and competence. Journal of Social and Clinical Psychology, 25(8), 855–874. https://doi.org/10.1521/jscp.2006.25.8.855
[176] Winstead, B. A., Derlega, V. J., Montgomery, M. J., & Pilkington, C. (1995). The quality of friendships at work and job satisfaction. Journal of Social and Personal Relationships, 12(2), 199–215. https://doi.org/10.1177/0265407595122003
[177] Woithe, J., & Filipec, O. (2023). Understanding the adoption, perception, and learning impact of ChatGPT in higher education: A qualitative exploratory case study analyzing students’ perspectives and experiences with the AI-based large language model. Jönköping University. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1762617
[178] Wood, R. E., Brown, R. E., & Kinser, P. A. (2022). The connection between loneliness and burnout in nurses: An integrative review. Applied Nursing Research, 66, 151609. https://doi.org/10.1016/j.apnr.2022.151609
[179] Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122–1136. https://doi.org/10.1109/JAS.2023.123618
[180] Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2007). The role of personal resources in the job demands-resources model. International Journal of Stress Management, 14(2), 121–141. https://doi.org/10.1037/1072-5245.14.2.121
[181] Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009). Work engagement and financial returns: A diary study on the role of job and personal resources. Journal of Occupational and Organizational Psychology, 82(1), 183–200. https://doi.org/10.1348/096317908X285633
[182] Xie, T., Pentina, I., & Hancock, T. (2023). Friend, mentor, lover: Does chatbot engagement lead to psychological dependence? Journal of Service Management, 34(4), 806–828. https://doi.org/10.1108/JOSM-02-2022-0072
[183] Xu, F. Z., Zhang, Y., Yang, H., & Wu, B. T. (2020). Sustainable HRM through improving the measurement of employee work engagement: Third-person rating method. Sustainability, 12(17), 7100. https://doi.org/10.3390/su12177100
[184] Xu, W., Dainoff, M. J., Ge, L., & Gao, Z. (2023). Transitioning to human interaction with AI systems: New challenges and opportunities for HCI professionals to enable human-centered AI. International Journal of Human–Computer Interaction, 39(3), 494–518. https://doi.org/10.1080/10447318.2022.2041900
[185] Yang, A., Li, Z., & Li, J. (2024). Advancing GenAI assisted programming: A comparative study on prompt efficiency and code quality between GPT-4 and GLM-4. arXiv Preprint arXiv:2402.12782. https://arxiv.org/abs/2402.12782
[186] Zhang, C., Zhang, C., Zheng, S., Qiao, Y., Li, C., Zhang, M., Dam, S. K., Thwal, C. M., Tun, Y. L., & Huy, L. L. (2023). A complete survey on generative AI (AIGC): Is ChatGPT from GPT-4 to GPT-5 all you need? arXiv Preprint arXiv:2303.11717. https://arxiv.org/abs/2303.11717
[187] Zhao, X., & Cox, A. (2024). ChatGPT and the digitisation of writing. Humanities and Social Sciences Communications, 11(1), 1–9. https://doi.org/10.1057/s41599-024-02904-x
[188] Zhou, L., Paul, S., Demirkan, H., Yuan, L., Spohrer, J., Zhou, M., & Basu, J. (2021). Intelligence augmentation: Towards building human-machine symbiotic relationship. AIS Transactions on Human-Computer Interaction, 13(2), 243–264. https://doi.org/10.17705/1thci.00149
[189] Zhou, T., Xu, C., Wang, C., Sha, S., Wang, Z., Zhou, Y., Zhang, X., Hu, D., Liu, Y., & Tian, T. (2022). Burnout and well-being of healthcare workers in the post-pandemic period of COVID-19: A perspective from the job demands-resources model. BMC Health Services Research, 22(1), 284. https://doi.org/10.1186/s12913-022-07608-z
[190] Zhou, Y., Lu, J., Liu, X., Zhang, P., & Chen, W. (2014). Effects of core self-evaluations on the job burnout of nurses: The mediator of organizational commitment. PloS One, 9(4), e95975. https://doi.org/10.1371/journal.pone.0095975
[191] Zhu, S., Wang, Z., Zhuang, Y., Jiang, Y., Guo, M., Zhang, X., & Gao, Z. (2024). Exploring the impact of ChatGPT on art creation and collaboration: Benefits, challenges, and ethical implications. Telematics and Informatics Reports, 14(3), 100138. https://doi.org/10.1016/j.teler.2024.100138 |
Description: | 碩士 國立政治大學 資訊管理學系 111356042 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111356042 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
604201.pdf | | 2215Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|