English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114875/145929 (79%)
Visitors : 53854374      Online Users : 1014
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/155950


    Title: 消費電子品牌的YouTube熱門影片行銷策略
    YouTube Trending Video Marketing Strategy for Consumer Electronics Brands
    Authors: 魏守芸
    Wei, Shou-Yun
    Contributors: 朴星俊
    Park, Sung-Jun
    魏守芸
    Wei, Shou-Yun
    Keywords: Youtube 發燒影片
    品牌
    消費電子
    數位行銷
    Youtube trending video
    Brand
    Consumer electronics
    Influencers
    Viewer engagement
    Date: 2025
    Issue Date: 2025-03-03 13:54:04 (UTC+8)
    Abstract: 隨著全球活躍用戶超過 24.9 億,YouTube 已成為影音行銷的重要平台。消費者越來越依賴 YouTube 影片來影響購買決策,特別是在消費性電子產品領域。因此,了解如何優化影片在 YouTube 發燒影片排行榜(Trending List)上的表現,對該產業的品牌行銷人員而言至關重要。本研究旨在驗證 YouTube 的演算法優先順序,並透過分析影響科技類影片在熱門趨勢榜上維持時間的因素,提供具體的行銷建議。研究聚焦於三個地區——南韓、英國和美國,分析了 2022 年 6 月至 2024 年 1 月期間,共 1,232 部發燒影片的資料,探討觀眾參與度指標、內容類型及地區差異對影片持續在發燒排行榜上存在時長的影響。

    研究結果首先顯示,按讚數增長是影響熱門趨勢維持時間的最關鍵因素,而觀看數增長的影響相對較小。此外,品牌製作內容(Brand-Generated Content,BGC)通常能獲得較高的觀看次數,而使用者生成內容(User-Generated Content,UGC)則在按讚數和留言數方面表現更為突出。

    地區差異也相當明顯——南韓的影片在熱門趨勢榜上的維持時間幾乎是美國和英國等西方市場的兩倍。這些發現能幫助消費性電子品牌根據不同地區的受眾特性,優化其 YouTube 行銷策略。
    With over 2.49 billion active users worldwide, YouTube has become a critical platform for video marketing. Consumers are increasingly relying on YouTube videos to influence their purchasing decisions, particularly in the consumer electronics sector. Understanding how to optimize video performance on YouTube's Trending list has become essential for brand marketers in this industry. This study aims to validate YouTube's algorithmic priorities and provide actionable marketing insights by analyzing the factors that influence the duration of technology-related videos on the Trending list. Focusing on three regions—South Korea, the United Kingdom, and the United States—the research examines a dataset of 1,232 trending videos from June 2022 to January 2024. It explores the impact of viewer engagement metrics, content type, and regional differences on trending duration.

    The findings first reveal that the growth in likes count is the most significant factor affecting trending duration, while the growth in view count has little impact. Additionally, BrandGenerated Content (BGC) typically achieves higher view counts, whereas User-Generated Content (UGC) outperforms in likes and comments.

    Regional differences are prominent, with South Korean videos trending for nearly twice as long as those in Western markets, the US and UK. These insights can help consumer electronics brands refine their YouTube marketing strategies by tailoring their approach to specific regional audiences.
    Reference: Google. (n.d.). Trending on YouTube. Youtube Help https://support.google.com/youtube/answer/7239739?hl=en

    The YouTube Team. (n.d.). (2021, November 10). An update to dislikes on YouTube. Youtube Official Blog https://blog.youtube/news-and-events/update-to-youtube/

    Nitya, H., Prathima, T., & Sugamya, K. (2024). Decoding YouTube’s Trends: Unveiling Viral Content Secrets. 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0 (pp. 1–13). IEEE. https://doi.org/10.1109/OTCON60325.2024.10687676

    Lu, J. (2023). Trending videos on YouTube. 2nd International Conference on Management and Education, Humanities and Social Sciences (MEHSS 2022), 7. 84–91. https://doi.org/10.54097/ehss.v7i.4016

    Pugalendhi, R., & Nazar, N. (2024). Decoding YouTube's trending videos: Factors, implications, and insights. International Conference on Global Synergy Summit - Bridging the Disciplines in Management, Research, Engineering, Education, and Humanities. 233–234. https://www.researchgate.net/publication/378691027_DECODING_YOUTUBE'S_TRENDING_VIDEOS_FACTORS_IMPLICATIONS_AND_INSIGHTS

    HOSSAIN, M. I., SABBIR, M. M., & KIM, H. J. (2023). Unveiling the Effect of TechTubers’ Unboxing Videos on Consumer Buying Behavior. Journal of Economics, Marketing and Management, 11(4), 41–52.
    https://doi.org/10.20482/JEMM.2023.11.4.41

    Zhou, Y., Ahmad, Z., Alsuhabi, H., Yusuf, M., Alkhairy, I., & Sharawy, A. M. (2021). Impact of YouTube Advertising on Sales with Regression Analysis and Statistical Modeling: Usefulness of Online Media in Business. Computational intelligence and neuroscience, 2021(1), 1–10. https://doi.org/10.1155/2021/9863155

    Gupta, H., & Singh, S. (2017). Social Media in Contemporary Marketing: YouTube Advertising for the Guerrillas. Media Watch, 8(3), 413–422.
    https://doi.org/10.15655/mw_2017_v8i3_49145

    Diwanji, V.S., & Lee, J. (2022). Comparing the Effects of User Generated Video Reviews and Brand Generated Advertisements on Consumer Decisions on YouTube. Journal of Applied Marketing Theory, 9(1), 48–75.
    https://doi.org/10.20429/jamt.2022.090105

    Hussain, M. N., Bandeli, K. K., Tokdemir, S., Al-Khateeb, S., & Agarwal, N. (2018). Understanding digital ethnography: Socio-computational analysis of trending YouTube videos. SOTICS 2018 : The Eighth International Conference on Social Media Technologies, Communication, and Informatics, 21–26. https://personales.upv.es/thinkmind/dl/conferences/sotics/sotics_2018/sotics_2018_1_30_60011.pdf

    Manikandan, P., Manimuthu, A., Sharmila Rajam, J., & Sathya Narayana Sharma, K. (2022). Prediction of YouTube View Count using Supervised and Ensemble Machine Learning Techniques. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS) (pp. 1038–1042). IEEE.
    https://doi.org/10.1109/ICACRS55517.2022.10029277

    Huang, S., & Yang, T. (2024). Auditing Entertainment Traps on YouTube: How Do Recommendation Algorithms Pull Users Away from News. Political Communication, 41(6), 903–920.
    https://doi.org/10.1080/10584609.2024.2343769

    Khan, M.L. (2017). Social media engagement: What motivates user participation and consumption on YouTube? Computers in Human Behavior, 66, 236–247.
    https://doi.org/10.1016/j.chb.2016.09.024
    Description: 碩士
    國立政治大學
    國際經營管理英語碩士學位學程(IMBA)
    111933022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111933022
    Data Type: thesis
    Appears in Collections:[國際經營管理英語碩士學程IMBA] 學位論文

    Files in This Item:

    File Description SizeFormat
    302201.pdf2144KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback