政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/155826
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114609/145646 (79%)
造访人次 : 53730896      在线人数 : 667
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/155826


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/155826


    题名: Utilizing Cross-Ratios for the Detection and Correction of Missing Digits in Instrument Digit Recognition
    作者: 蔡炎龍
    Tsai, Yen-Lung;Huang, Jui-Hua;Chen, Yong-Han
    贡献者: 應數系
    关键词: automatic meter reading;instrument degree interpretation;handling of missing digits;cross-ratio
    日期: 2024-05
    上传时间: 2025-02-24 15:56:15 (UTC+8)
    摘要: This paper aims to enhance the existing Automatic Meter Reading (AMR) technologies for utilities in the public services sector, such as water, electricity, and gas, by allowing users to regularly upload images of their meters, which are then automatically processed by machines for digit recognition. We propose an end-to-end AMR approach designed explicitly for unconstrained environments, offering practical solutions to common failures encountered during the automatic recognition process, such as image blur, perspective distortion, partial reflection, poor lighting, missing digits, and intermediate digit states, to reduce the failure rate of automatic meter readings. The system’s first stage involves checking the quality of the user-uploaded images through the SVM method and requesting re-uploads for images unsuitable for digit extraction and recognition. The second stage employs deep learning models for digit localization and recognition, automatically detecting and correcting issues such as missing and intermediate digits to enhance the accuracy of automatic meter readings. Our research established a gas meter training dataset comprising 52,000 images, extensively annotated across various degrees, to train the deep learning models for high-precision digit recognition. Experimental results demonstrate that, with the simple SVM model, an accuracy of 87.03% is achieved for the classification of blurry image types. In addition, meter digit recognition (including intermediate digit states) can reach 97.6% (mAP), and the detection and correction of missing digits can be as high as 63.64%, showcasing the practical application value of the system developed in this study.
    關聯: Mathematics, Vol.12, No.11, 1669
    数据类型: article
    DOI 連結: https://doi.org/10.3390/math12111669
    DOI: 10.3390/math12111669
    显示于类别:[應用數學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML9检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈