政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/155797
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114611/145648 (79%)
造訪人次 : 53788581      線上人數 : 723
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/155797


    題名: Fusion Learning from Non-contrast CT Scans for the Detection of Hemorrhagic Transformation in Stroke Patients
    作者: 羅崇銘
    Lo, Chung-Ming;Hung, Peng-Hsiang
    貢獻者: 圖檔所
    關鍵詞: Computed tomography;Hemorrhagic transformation;Deep learning
    日期: 2024-12
    上傳時間: 2025-02-24 15:55:37 (UTC+8)
    摘要: Hemorrhagic transformation (HT) is a potentially catastrophic complication after acute ischemic stroke. Prevention of HT risk is crucial because it worsens prognosis and increases mortality. This study aimed at developing and validating a computer-aided diagnosis system using pretreatment non-contrast computed tomography (CT) scans for HT prediction in stroke patients undergoing revascularization. This retrospective study included all acute ischemic stroke patients with non-contrast CT before reperfusion therapy who also underwent follow-up MRI from January 2018 to December 2022. Among the 188 evaluated patients, any degree of HT at follow-up imaging was observed in 103 patients. HT diagnosis via MRI was defined as the reference standard for neuroradiologists. Using a database of 2076 serial non-contrast CT images of the brain, pretrained deep learning architectures such as convolutional neural networks and vision transformers (ViTs) were used for feature extraction. The performance of the predictive HT risk model was evaluated via tenfold cross-validation in machine learning classifiers. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated. Using an individual deep learning architecture, DenseNet201 features achieved the highest accuracy of 87% and an AUC of 0.8863 in the classifier of the subspace ensemble k-nearest neighbor. By combining the DenseNet201 and ViT features, the accuracy and AUC can be improved to 88% and 0.8987, respectively, which are significantly better than those of using ViT alone. Detecting HT in stroke patients is a meaningful but challenging issue. On the basis of the model approach, HT diagnosis would be more automatic, efficient, and consistent, which would be helpful in clinic use.
    關聯: Journal of Imaging Informatics in Medicine, pp.1-13
    資料類型: article
    DOI 連結: https://doi.org/10.1007/s10278-024-01350-0
    DOI: 10.1007/s10278-024-01350-0
    顯示於類別:[圖書資訊與檔案學研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML12檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋