English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114367/145401 (79%)
Visitors : 53043829      Online Users : 387
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/155514


    Title: 結合分類與迴歸技術之電信網路弱訊區域偵測混合模型
    A Hybrid Model for Weak Signal Area Detection in Telecom Networks Using Classification and Regression Techniques
    Authors: 張舜欣
    Chang, Shun-Hsin
    Contributors: 謝佩璇
    張舜欣
    Chang, Shun-Hsin
    Keywords: 機器學習
    弱訊區偵測
    分類技術
    迴歸模型
    網路優化
    Machine Learning
    Weak Signal Detection
    Classification Techniques
    Regression Models
    Network Optimization
    Date: 2024
    Issue Date: 2025-02-04 16:11:18 (UTC+8)
    Abstract: 電信網路優化是提升網路效能和使用者體驗的關鍵過程。隨著行動數據流量的急劇增長,在高密度區域中,大量使用者同時連線,造成頻譜資源迅速被瓜分,使每個用戶可獲得的有效頻寬下降。再加上建物造成的訊號遮蔽,以及各類無線訊號彼此干擾,導致訊號品質與覆蓋範圍嚴重受限。因此,辨識和解決弱訊區成為網路優化的重要目標。弱訊區指的是在特定區域內,訊號強度低於可接受標準的區域,可能導致用戶通話中斷、數據傳輸速度緩慢或網路無法連接等問題。透過標記這些弱訊區,電信業者可以進行針對性的改善措施,如增加基站或小型基站的佈建,調整現有基站的發射功功率與天線傾角,或優化頻譜資源的分配。
    本研究旨在探討如何建立一個混合型的機器學習模型框架,針對已知訊號地點,運用分群暨分類技術辨識弱訊區;對於缺乏明確訊號資料的地點,則透過迴歸模型預測該地點的訊號指標。分群暨分類模型的結果可為已知訊號的地點生成一張弱訊區的初步分佈地圖;迴歸模型的結果,進一步補全未知地點的訊號指標,並更新地圖。最終,將兩者的結果結合,生成一張完整的弱訊區分佈圖,用於網路優化和天線調整參考。
    實驗結果顯示,採用隨機森林和梯度提升決策樹進行分類時,相較於支援向量機和人工神經網路,兩者在各情境下均表現特別突出。在預測訊號指標方面, K最近鄰迴歸、決策樹迴歸與隨機森林迴歸的R2分數均接近0.9甚至以上,而線性迴歸表現相對較差。進一步的散佈圖分析顯示,隨機森林迴歸的數據點分佈更為緊密,且與參考線的吻合度更高,表現出優異的數據模式捕捉能力與良好的泛化能力。這些實驗結果充分證明了本研究所提出的混合型機器學習模型框架在處理弱訊區辨識和訊號預測方面的有效性,對於電信網路之優化具有實質的技術支援。
    With surging mobile data traffic in dense areas, identifying and addressing weak-signal regions is crucial for improving telecommunication networks. Such regions, where signal strength falls below standards, can cause dropped calls and slow data rates.
    This study proposes a hybrid machine learning framework that incorporates clustering and classification to identify weak-signal areas from known data points, and regression to predict signal values where data are lacking. Integrating these results yields a comprehensive weak-signal distribution map to guide network optimization and antenna adjustments.
    Experiments show that Random Forest and Gradient Boosting consistently outperform other classifiers, while K-Nearest Neighbors Regression, Decision Tree Regression, and Random Forest regressors achieve R² scores exceeding 0.9, outperforming Linear Regression. Random Forest Regression further demonstrates superior alignment of predicted values with actual measurements. These findings confirm the framework’s effectiveness in identifying and predicting weak-signal regions, providing valuable support for telecommunication network optimization.
    Reference: [1] 行動寬頻服務用戶數統計https://www.ncc.gov.tw/chinese/gradation.aspx?site_content_sn=3152
    [2] 內政部人口相關統計(人口結構)
    https://www.moi.gov.tw/cl.aspx?n=3922
    [3] Guo, Y., Yu, L., Wang, Q., Ji, T., Fang, Y., Wei-Kocsis, J., & Li, P. (2021). Weak Signal Detection in 5G+ Systems: A Distributed Deep Learning Framework. Proceedings of the Twenty-Second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, 201–210. https://doi.org/10.1145/3466772.3467049
    [4] Cheng, T., Liu, C., & Ding, W.(2019). Weak Signal Detection Based on Deep Learning. Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing, 114–118. https://doi.org/10.1145/3330393.3330409
    [5] Al-Thaedan, A., Shakir, Z., Mjhool, A. Y., Alsabah, R., Al-Sabbagh, A., Nembhard, F., & Salah, M. (2024). A machine learning framework for predicting downlink throughput in 4G-LTE/5G cellular networks. International Journal of Information Technology, 16(2), 651–657. https://doi.org/10.1007/s41870-023-01678-w
    [6] Hastie, T., Tibshirani, R., & Friedman, J.(2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.). Springer. http://doi.org/10.1007/978-0-387-84858-7
    [7] Altman, N. S.(1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 46(3), 175-185. http://doi.org/10.1080/00031305.1992.10475879
    [8] Breiman, L., Friedman, J., Olshen, R.A., & Stone, C.J.(1984). Classification and Regression Trees (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315139470
    [9] Breiman, L.(2001). Random Forests. Machine Learning 45, 5–32. https://doi.org/10.1023/A:1010933404324
    [10] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J.(2023). An introduction to statistical learning : with applications in Python. Springer International Publishing. https://doi.org/10.1007/978-3-031-38747-0
    [11] Liu, K., Li, A., Lin, X., Mao, Z., & Zhang, W.(2024). Empirical study on the performance of various machine learning models in predicting stock price movements as a binary classification task. Applied and Computational Engineering. 55. 129-144. https://doi.org/10.54254/2755-2721/55/20241403
    [12] Hammood, L., Doğru, İ., & Kılıç, K.(2023). Machine Learning-Based Adaptive Genetic Algorithm for Android Malware Detection in Auto-Driving Vehicles. Applied Sciences. 13. 5403. https://doi.org/10.3390/app13095403
    [13] Hardman, M. F., Homkrajae, A., Eaton-Magaña, S., Breeding, C. M., Palke, A. C., & Sun, Z. (2024). Classification of Gem Materials Using Machine Learning. Gems & Gemology, 60(3), 306–329. https://doi.org/10.5741/GEMS.60.3.306
    [14] Kartikasari, P., Utami, I. T., Suparti, S., & Rahman, S. D. F.(2024). Breast Cancer Classification Using Support Vector Machine(SVM) and Light Gradient Boosting Machine(LightGBM) Models. Media Statistika, 16(2), 182–193. https://doi.org/10.14710/medstat.16.2.182-193
    [15] J M, S. L., & P, S.(2024). Unveiling the potential of machine learning approaches in predicting the emergence of stroke at its onset: A predicting framework. Scientific Reports, 14, 20053. https://doi.org/10.1038/s41598-024-70354-1
    [16] Rajayyan, S., & Mustafa, S. M. M.(2023). Comparative Analysis of Performance Metrics for Machine Learning Classifiers with a Focus on Alzheimer’s Disease Data. Acta Informatica Pragensia, 12(1), 54–70. https://doi.org/10.18267/j.aip.198
    [17] Kumar, D., & Ahamad, F.(2024). Opinion Extraction using Hybrid Learning Algorithm with Feature Set Optimization Approach. Journal of Electrical Systems. 20. 1266-1276. https://doi.org/10.52783/jes.3694
    [18] Kumar, S., Choudhary, M.K. & Thomas, T.(2024) A hybrid technique to enhance the rainfall-runoff prediction of physical and data-driven model: a case study of Upper Narmada River Sub-basin, India. Scientific Reports 14, 26263. https://doi.org/10.1038/s41598-024-77655-5
    [19] Liang, W., Luo, S., Zhao, G., & Wu, H.(2020). Predicting Hard Rock Pillar Stability Using GBDT, XGBoost, and LightGBM Algorithms. Mathematics, 8(5), 765. https://doi.org/10.3390/math8050765
    [20] Patnaik, A., Anagnostou, D. E., Mishra, R., ChristodoulouCG., & Lyke, J. C.(2006). Applications of neural networks in wireless communications. IEEE Antennas and Propagation Magazine, 46(3), 130–137. https://doi.org/10.1109/MAP.2004.1374125
    [21] RTR 欄位定義
    https://www.netztest.at/en/OpenDataSpecification.html#response-2
    [22] Pedregosa, F., Varoquaux, G., Gramfort, A., et al.(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
    [23] RTR-NetzTest https://www.netztest.at/en/Opendata
    [24] Ookla(Speedtest by Ookla Global Fixed and Mobile Network Performance Maps)
    https://registry.opendata.aws/speedtest-global-performance/
    [25] Powers, D., & Ailab.(2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies. 2(1). https://doi.org/10.9735/2229-3981
    [26] Campello R., Moulavi D., Zimek A., & Sander J.(2015). Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 10, 1, Article 5, 51 pages. https://doi.org/10.1145/2733381
    [27] Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Knowledge Discovery and Data Mining, 226–231. https://dl.acm.org/doi/10.5555/3001460.3001507
    [28] Bishop, C. (2006). Pattern Recognition and Machine Learning. Journal of Electronic Imaging. 16(4):140-155. https://doi.org/10.1117/1.2819119
    Description: 碩士
    國立政治大學
    資訊科學系碩士在職專班
    100971003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100971003
    Data Type: thesis
    Appears in Collections:[資訊科學系碩士在職專班] 學位論文

    Files in This Item:

    File Description SizeFormat
    100301.pdf3863KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback