Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/155453
|
Title: | 以分群、S-BERT與ChatGPT應用之深度學習方法於勞訴類案推薦 Deep Learning Methods Using Clustering, S-BERT, and ChatGPT for Recommending Similar Labor and Employment Cases |
Authors: | 吳柏憲 Wu, Po-Hsien |
Contributors: | 劉昭麟 Liu, Chao-Lin 吳柏憲 Wu, Po-Hsien |
Keywords: | 民事訴訟 類似案件推薦 語意分群 語意分類 卷積神經網路 雙向長短記憶網路 S-BERT 大型語言模型 ChatGPT civil cases Similar cases recommendation Machine learning Semantic clustering Semantic classification Convolutional neural networks Bi-directional long short-term memory Large language models ChatGPT |
Date: | 2025 |
Issue Date: | 2025-02-04 15:44:06 (UTC+8) |
Abstract: | 為加速勞資爭議訴訟相關裁判之審理進程,法院會依據聲請人與相對人兩造,即勞資雙方所有爭執之事項進行條列,是為「爭點列表」,並逐一對其進行審理。 然考量近年來勞資爭議相關訴訟有上升之趨勢,對一般大眾而言,查找具相似情事之裁判書並給出具可解釋性相似性理由之自動化方法尤為重要。 因此,本研究將結合傳統機器學習方法 (分群、邏輯迴歸、集成學習) 與深度學習方法 (S-BERT、大型語言模型、CNN、BiLSTM) ,建構一類似案件推薦系統,並對索引與推薦之案件標注不同指涉事項之對應相似段落,以期能減少一般大眾查找與篩選類似案件之負擔。 本研究以前沿研究之標記資料與裁判書資料基礎下,將預測準確率由70%提升至77%,但考慮到模型需具客觀能效之比較,我們亦在後續章節與其他類似案件推薦研究之架構進行能效對比。 本研究主要貢獻為:基於敘述句分群結果產生對應內容之微調(fine-tune)訓練S-BERT模型之資料與方法、以兩造主張段落及爭點列表進行類似案件推薦、僅以原告主張段落與根據Chatgpt產生之摘要進行類似案件推薦。 鑒於各級司法機關新收案件數量皆有上升之趨勢,本研究亦在無標記基礎下產生微調訓練S-BERT模型之資料與方法、使用ChatGPT抽取摘要之prompt,及相對通用之可解釋性標注與推薦架構 (僅需主張段落與該段落之摘要) ,以期將該方法推廣至其他類別之民事訴訟,乃至其他領域。 In order to speed up the adjudication process of labor litigation, the court will list all the disputes between the plaintiff and the defendant, that is, the disputes between the employer and employee, as a "list of disputes", and review them one by one. However, considering that the number of lawsuits related to labor disputes is increasing these years, it is particularly important for general public to find automated methods that find judgments with similar situations and provide explainable reasons for the similarities. Therefore, this research will combine traditional machine learning methods (clustering, logistic regression, ensemble learning) and deep learning methods (S-BERT, large language models, CNN, BiLSTM) to construct a similar case recommendation system, and perform indexing and recommendation cases are marked with corresponding similar paragraphs that refer to different matters, in order to reduce the burden on general public to find and screen similar cases. Based on the label data and judgment data from cutting-edge research, this study increased the prediction accuracy from 70% to 77%. However, considering that the model needs to have objective performance comparisons, we will also recommend research with other similar cases in subsequent chapters. Architectures are compared for performance. The main contributions of this study are: the materials and methods for training the S-BERT model based on fine-tuning the corresponding content generated by the clustering results of narrative sentences, recommending similar cases using two relay paragraphs and argument lists, and using only the plaintiff’s claim paragraph and summary generated based on ChatGPT for similar case recommendations. In view of the increasing trend in the number of new cases received by judicial agencies at all levels, this study also produces data and methods for fine-tuning and training the S-BERT model on a label-free basis, prompts for extracting summaries using ChatGPT, and relatively universal interpretable annotations. and a recommended structure (only the claim paragraph and a summary of the paragraph are required), with a view to extending this method to other types of civil litigation and even other fields. |
Reference: | [1] Yoosuf, S.,Yang, Y., “Fine-grained propaganda detection with fine-tuned BERT.,” In Proceedings of the second workshop on natural language processing for internet freedom: censorship, disinformation, and propaganda, pp. 87-91, 2019. [2] Shao, Y., Shao, T., Wang, M., Wang, P., & Gao, J., “A sentiment and style controllable approach for Chinese poetry generation.,” In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4784-4788, 2021. [3] Liu, C.-L. & Liu, Y.-F., “Some Practical Analyses of the Judgment Documents of Labor Litigations for Social Conflicts and Similar Cases.,” LegalAIIA 2023, pp. 100-109, 2023. [4] Reimers, N., & Gurevych, I., “Sentence-bert: Sentence embeddings using siamese bert-networks.,” arXiv preprint, 2019. Available: https://arxiv.org/abs/1908.10084. [5] Brown, T. B., “Language models are few-shot learners.,” arXiv preprint, 2020. Available: https://arxiv.org/abs/2005.14165. [6] Sutskever, I., Vinyals, O., & Le, Q. V., “Sequence to sequence learning with neural networks.,” arXiv preprint, 2014. Available: https://arxiv.org/abs/1409.3215. [7] Vaswani, A., “Attention is all you need.,” arXiv preprint, 2017. Available: https://arxiv.org/abs/1706.03762. [8] Devlin, J., “Bert: Pre-training of deep bidirectional transformers for language understanding.,” arXiv preprint, 2018. Available: https://arxiv.org/abs/1810.04805. [9] Xu, Z., “RoBERTa-WWM-EXT fine-tuning for Chinese text classification.,” arXiv preprint, 2021. Available: https://arxiv.org/abs/2103.00492. [10] Xiao, C., Hu, X., Liu, Z., Tu, C., & Sun, M., “Lawformer: A pre-trained language model for chinese legal long documents.,” AI Open, 2, pp. 79-84, 2021. [11] Bommarito, M.J., & Katz, D.M., “GPT Takes the Bar Exam.,” ArXiv preprint, 2022. Available: https://arxiv.org/abs/2212.14402. [12] Katz, D. M., Bommarito, M. J., Gao, S., & Arredondo, P., “Gpt-4 passes the bar exam.,” SSRN, 2024. Available: https://ssrn.com/abstract=4389233. [13] Hong, Z., Zhou, Q., Zhang, R., Li, W., & Mo, T., “Legal feature enhanced semantic matching network for similar case matching.,” In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-8, 2020. [14] Bhattacharya, P., Ghosh, K., Pal, A., & Ghosh, S., “Methods for computing legal document similarity: A comparative study.,” arXiv preprint, 2020. Available: https://arxiv.org/abs/2004.12307.. [15] Kumar, S., Reddy, P. K., Reddy, V. B., & Singh, A., “Similarity analysis of legal judgments.,” In Proceedings of the fourth annual ACM Bangalore conference, pp. 1-4, 2011. [16] Raghav, K., Balakrishna Reddy, P., Balakista Reddy, V., & Krishna Reddy, P., “Text and citations based cluster analysis of legal judgments.,” In Mining Intelligence and Knowledge Exploration: Third International Conference, pp. 449-459, 2015. [17] Pang, L., Lan, Y., Guo, J., Xu, J., Wan, S., & Cheng, X., “Text matching as image recognition.,” In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2793-2799, 2016. [18] Yang, W., Jia, W., Zhou, X., & Luo, Y., “Legal judgment prediction via multi-perspective bi-feedback network.,” arXiv preprint, 2019. Available: https://arxiv.org/abs/1905.03969. [19] Campello, R. J., Moulavi, D., & Sander, J., “Density-based clustering based on hierarchical density estimates.,” Pacific-Asia conference on knowledge discovery and data mining, pp. 160-172, 2013. [20] Frey, B. J., & Dueck, D., “Clustering by passing messages between data points.,” science, 315, 5814, pp. 972-976, 2007. [21] Hadsell, R., Chopra, S., & LeCun, Y., “Dimensionality reduction by learning an invariant mapping.,” In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR'06), 2, pp. 1735-1742, June 2006. [22] Diederik, P. K., “Adam: A method for stochastic optimization.,” arXiv preprint, 2014. Available: https://arxiv.org/abs/1412.6980. [23] Xiao, C., Zhong, H., Guo, Z., Tu, C., Liu, Z., Sun, M., ... & Xu, J., “Cail2019-scm: A dataset of similar case matching in legal domain.,” arXiv preprint, 2019. Available: https://arxiv.org/abs/1911.08962. [24] Liu, Y. F., Liu, C. L., & Yang, C., “Clustering Issues in Civil Judgments for Recommending Similar Cases.,” In Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022), pp. 184-192, 2022. [25] Müllner, D., “Modern hierarchical, agglomerative clustering algorithms.,” arXiv preprint, 2011. Available: https://arxiv.org/abs/1109.2378. [26] Wang, K., Zhang, J., Li, D., Zhang, X., & Guo, T., “Adaptive affinity propagation clustering.,” arXiv preprint, 2008. Available: https://arxiv.org/abs/0805.1096. |
Description: | 碩士 國立政治大學 資訊科學系 111753120 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111753120 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
312001.pdf | | 2154Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|