政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/154755
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113961/144987 (79%)
造訪人次 : 51997177      線上人數 : 659
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/154755
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/154755


    題名: Fully automated learning and predict price of aquatic products in Taiwan wholesale markets using multiple machine learning and deep learning methods
    作者: 彭彥璁
    Peng, Yan-Tsung;Lai, Yi-Ting;Lien, Wei-Cheng;Cheng, Yun-Chiao;Lin, Yi-Ting;Liao, Chen-Jie;Chiu, Yu-Shao
    貢獻者: 資訊系
    日期: 2024-05
    上傳時間: 2024-12-12 09:27:59 (UTC+8)
    摘要: The aquatic market price is an essential indicator for fishermen in making decisions regarding conveyance, fish-catching, and wholesale strategies. As a guide for the aquaculture industry, understanding market prices, the geographical distribution of fish prices, and the prediction of fish prices are vital. In Taiwanese fisheries, however, predicting aquatic prices is challenging due to their drastic fluctuations caused by tropical and subtropical climate variations, export/import fish quantity changes, and political and economic situation uncertainty. Therefore, instead of using a single machine learning model to address the price fluctuations, we propose a hybrid fish price prediction model integrating multiple machine learning and deep learning models to identify and predict fish price dynamics in various wholesale markets. The extensive experimental results on actual market data from the Taiwan Council of Agriculture (COA) show that the proposed models can achieve >90% accuracy in predicting future aquatic prices. Additionally, we developed a fully automated learning and prediction system architecture on the cloud, allowing us to acquire data automatically and fine-tune the AI models continuously to achieve better performance with long-term operability.
    關聯: Aquaculture, Vol.586, 740741
    資料類型: article
    DOI 連結: https://doi.org/10.1016/j.aquaculture.2024.740741
    DOI: 10.1016/j.aquaculture.2024.740741
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML24檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋