English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51954396      Online Users : 800
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/154211
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/154211


    Title: 基於環境感知之樓層間貨物運送無人機自主降落決策
    Research on Autonomous Landing Decision for UAV Based on Environmental Perception between Floors in Cargo Delivery
    Authors: 蘇冠華
    Su, Guan-Hua
    Contributors: 劉吉軒
    Liu, Jyi-Shane
    蘇冠華
    Su, Guan-Hua
    Keywords: 智慧無人機
    路徑規劃
    避障策略
    環境感知
    自主降落
    Smart UAV
    Path Planning
    Obstacle Avoidance Strategies
    Environmental Perception
    Autonomous Landing
    Date: 2024
    Issue Date: 2024-11-01 11:22:37 (UTC+8)
    Abstract: 隨著無人機技術的不斷發展,無人機在各個領域的應用越來越廣泛,其中包括無人機運送貨物的議題。無人機自主降落在建築物的能力對於實現無人機運送貨物的目標具有重要價值,本論文介紹了一種基於環境感知的樓層間自主降落決策系統。
    本系統涵蓋的範圍包括路徑規劃、避障機制、著陸規劃。路徑規劃包括邊界引導與定位的處理與搜索路徑規劃,其中括邊界引導與定位是透過深度估計和邊緣偵測等影像處理技術並結合GPS影像中心點進行後處理,以找到目標住戶的所在面;搜索路徑規劃則是進行標記的搜尋,透過有效率的路徑規劃方式尋找住戶所在目標;避障機制階段主要是為了確保系統在垂直降落階段的安全性,故透過無人機機身的傳感器與視覺系統的結合來進行避障機制的設計;著陸規劃則是使用地面標記AprilTag進行路徑規劃引導,讓無人機在有限的陽台空間安全著陸。
    本研究與過往無人機貨物運送最不同的部分在於過往研究通常只針對空曠場域進行簡單著陸,由於無較為完善的路徑規劃機制,故無法應用於建築物等複雜場域中;而此研究由於有較為詳細的路徑規劃及避障規劃,能夠讓無人機適用於大多數未知建築物。
    本研究提出了一個綜合且有效的無人機應用模組,旨在實現無人機應用於運送貨物的場景。本系統結合了多種感知、決策和控制技術,在無人機運送貨物的領域具有高度的應用價值。
    With the continuous advancement of drone technology, the applications of unmanned aerial vehicles (UAVs) have expanded across various fields, including the delivery of goods. The autonomous landing capability of drones on buildings is crucial for achieving the goal of unmanned aerial delivery. This paper introduces an environment-aware inter-floor autonomous landing decision system.
    The system encompasses path planning, obstacle avoidance mechanisms, and landing planning. Path planning involves processing boundary guidance and localization through image processing techniques such as depth estimation and edge detection, combined with post-processing using GPS image center points to locate the target recipient’s floor. Search path planning is conducted by efficiently marking designated search areas to locate the target recipient. The obstacle avoidance mechanism ensures safety during the vertical descent phase, incorporating two obstacle avoidance systems based on visual information and the drone’s onboard sensors. Landing planning utilizes ground markers, specifically AprilTags, for path guidance, allowing the drone to safely land in limited balcony spaces.
    This study differs from previous research on drone cargo delivery, particularly in addressing the challenges of complex landing scenarios within architectural structures. The detailed path planning and obstacle avoidance strategies proposed in this study make it adaptable to a wide range of unknown buildings.
    The research introduces a comprehensive and effective module for drone applications, aiming to facilitate the delivery of goods using unmanned aerial vehicles. The system integrates various perception, decision-making, and control technologies, offering high applicability in the field of UAV cargo delivery.
    Reference: [1] Kavita Gupta, Sandhya Bansal, and Rajiv Goel. Uses of drones in fighting covid-19 pandemic. In202110thInternationalConferenceonSystemModeling Advancement in Research Trends (SMART), pages 651–655, 2021. doi: 10.1109/SMART52563.2021.9676290.
    [2] Alvika Gautam, P.B. Sujit, and Srikanth Saripalli. A survey of autonomous landing techniques for uavs. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pages 1210–1218, 2014. doi:10.1109/ICUAS.2014.6842377.
    [3] Hossein Eskandaripour and Enkhsaikhan Boldsaikhan. Last-mile drone delivery:Past, present, and future. Drones, 7(2), 2023. ISSN 2504-446X. doi: 10.3390/drones7020077. URL https://www.mdpi.com/2504-446X/7/2/77.
    [4] Kai Feng, Weixing Li, Shengyang Ge, and Feng Pan. Packages delivery based on marker detection for uavs. pages 2094–2099, 2020. doi: 10.1109/CCDC49329.2020.9164677.
    [5] Assem Alsawy, Alan Hicks, Dan Moss, and Susan Mckeever. An image processing based classifier to support safe dropping for delivery-by-drone. Five:1–5, 2022. doi:10.1109/IPAS55744.2022.10052868.
    [6] Gino Brunner, Bence Szebedy, Simon Tanner, and Roger Wattenhofer. The urban last mile problem: Autonomous drone delivery to your balcony. pages 1005–1012,2019. doi:10.1109/ICUAS.2019.8798337.
    [7] ErosInnocenti, GiacomoAgostini, andRomeoGiuliano. Uavsformedicinedelivery in a smart city using fiducial markers. Information, 13(10), 2022. ISSN 2078-2489. doi: 10.3390/info13100501. URL https://www.mdpi.com/2078-2489/13/
    10/501.
    [8] Didula Dissanayaka, Thumeera R. Wanasinghe, Oscar De Silva, Awantha Jayasiri, and George K. I. Mann. Review of navigation methods for uav-based parcel delivery. IEEE Transactions on Automation Science and Engineering, 21(1):1068–1082,2024. doi: 10.1109/TASE.2022.3232025.
    [9] KFC. Kfc takes flight with australian-first drone delivery. February 04, 2022.from https://global.kfc.com/press-releases/we-liked-it-so-we-put-a-wing-on-it-kfctakes-flight-with-australian-first/.
    [10] Amazon Staff. Get medications faster with drone delivery from amazon pharmacy. October 18, 2023. from https://www.aboutamazon.com/news/retail/amazon
    pharmacy-amazon-air-prescription-drone-delivery.
    [11] Wang Xu. Shenzhen launches china’s first blood deliv
    ery platform powered by drones.January 22, 2024.from
    https://www.chinadaily.com.cn/a/202401/22/WS65adc2c5a3105f21a507d876.html.
    [12] A. Bochkovskiy R. Ranftl and V. Koltun. Vision transformers for dense prediction. IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,Canada, 2021. doi: 10.1109/ICCV48922.2021.01196. URL https://arxiv.org/abs/2103.13413?source=post_page268c370b74b8.
    [13] MatteoPriorelli, Giovanni Pezzulo, and Ivilin Peev Stoianov. Active vision in binocular depth estimation: A top-down perspective. Biomimetics, 8(5), 2023. ISSN 2313-7673. doi: 10.3390/biomimetics8050445. URL https://www.mdpi.com/2313-7673/8/5/445.
    [14] Yue Ming, Xuyang Meng, Chunxiao Fan, and Hui Yu. Deep learning for monocular depth estimation: A review. Neurocomputing, 438:14–33, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2020.12.089. URL https://www.sciencedirect.com/science/article/pii/S0925231220320014.
    [15] Kausar Mukadam, Aishwarya Sinh, and Ruhina Karani. Detection of landing areas for unmanned aerial vehicles. In 2016 International Conference on Computing Communication Control and automation (ICCUBEA), pages 1–5, 2016. doi:
    10.1109/ICCUBEA.2016.7860044.
    [16] Tao Wu, Lunwen Wang, and Jingcheng Zhu. Image edge detection based on sobel with morphology. In 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC), volume 5, pages 1216–1220, 2021.
    doi: 10.1109/ITNEC52019.2021.9586895.
    [17] Touka Hafsia, Asma Belhaj, Hatem Tlijani, and Khaled Nouri. Implementing canny edge detection algorithm for different blurred and noisy images. In 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pages 342–349, 2022. doi: 10.1109/STA56120.2022.10019120.
    [18] Yibin Tang, Ying Chen, Ning Xu, Aimin Jiang, and Yuan Gao. Image denoising via sparse approximation using eigenvectors of graph laplacian. In 2015 Visual Com
    munications and Image Processing (VCIP), pages 1–4, 2015. doi: 10.1109/VCIP.2015.7457799.
    [19] Jawad N. Yasin, Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Jukka Heikkonen, Hannu Tenhunen, and Juha Plosila. Unmanned aerial vehicles (uavs):Collision avoidancesystemsandapproaches. IEEEAccess,8:105139–105155,2020.doi: 10.1109/ACCESS.2020.3000064.
    [20] Tong Guan, Guobing Zhang, and Pengyun Chen. A terrain matching navigation algorithm for uav. In 2021 33rd Chinese Control and Decision Conference (CCDC), pages 5203–5207, 2021. doi: 10.1109/CCDC52312.2021.9602743.
    [21] Jingyu Niu, Dianwei Wang, Pengfei Han, Jie Fang, Xincheng Ren, Yongrui Qin, and Zhijie Xu. Image enhancement of low light uav via global illumination self-aware feature estimation. In 2021 3rd International Conference on Natural Language Processing (ICNLP), pages 225–231, 2021. doi: 10.1109/ICNLP52887.2021.00044.
    [22] Tong Guan, Guobing Zhang, and Pengyun Chen. A terrain matching navigation algorithm for uav. In 2021 33rd Chinese Control and Decision Conference (CCDC),pages 5203–5207, 2021. doi: 10.1109/CCDC52312.2021.9602743.
    [23] Shubhani Aggarwal and Neeraj Kumar. Path planning techniques for unmanned aerial vehicles: A review,solutions, and challenges. Computer Communications, 149:270–299, 2020. ISSN 0140-3664. doi: https://doi.org/10.1016/j.comcom.2019.10.014. URL https://www.sciencedirect.com/science/article/pii/S0140366419308539.
    [24] LongXin,ZimuTang,WeiqiGai,andHaoboLiu. Vision-basedautonomouslanding for the uav: A review. Aerospace, 9(11), 2022. ISSN 2226-4310. doi: 10.3390/aerospace9110634. URL https://www.mdpi.com/2226-4310/9/11/634.
    [25] Adnan Brdjanin, Nadja Dardagan, Dzemil Dzigal, and Amila Akagic. Single object trackers in opencv: A benchmark. In 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA), pages 1–6, 2020. doi: 10.1109/INISTA49547.2020.9194647.
    [26] Sahaj K. Mistry, Shreyas Chatterjee, Ajeet K. Verma, Vinit Jakhetiya, Badri N. Subudhi, and Sunil Jaiswal. Drone-vs-bird: Drone detection using yolov7 with csrt tracker. In ICASSP2023-2023IEEEInternationalConferenceonAcoustics, Speech and Signal Processing (ICASSP), pages 1–2, 2023. doi: 10.1109/ICASSP49357. 2023.10095146.
    [27] Ögren P Colledanchise, M. Behavior trees in robotics and ai: An introduction (1st ed.). crc press. In Behavior Trees in Robotics and AI: An Introduction (1st ed.). CRC Press, pages 1–4, 2018. doi: 10.1201/9780429489105.
    [28] LiuRuifeng, WangJiasheng, Zhang Haolong, and Tian Mengfan. Research progress and application of behavior tree technology. In 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC), pages 1–4, 2019.doi: 10.1109/BESC48373.2019.8963263.
    [29] Avishkar Seth, James Alice, Kuantama Endrowednes, Mukhopadhyay Subhas, and Han Richard. Vertical trajectory analysis using qr code detection for drone delivery
    application. In Nagender Kumar Suryadevara, Boby George, Krishanthi P. Jayasundera, and Subhas Chandra Mukhopadhyay, editors, Sensing Technology, pages 476–483, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-29871-4.
    [30] Mirco Theile, Simon Yu, Or D. Dantsker, and Marco Caccamo. Trajectory estimation for geo-fencing applications on small-size fixed-wing uavs. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1971-1977, 2019. doi: 10.1109/IROS40897.2019.8967579.
    [31] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE International Conference on Robotics and Automation, pages 3400–3407, 2011. doi:
    10.1109/ICRA.2011.5979561.
    [32] Amorepacific Group. Amorepacific group opens new headquarters.https://stories.amorepacific.com/en/amorepacific-group-opens-new-headquarters/,January 09 2018. Accessed: 2024-05-24.
    [33] KPF. Urban farm at kpf’s hysan place featured in bbc storyworks. https://www.kpf.com/news/urban-farm-at-kpfs-hysan-place-featured-in-bbc-storyworks,January 27 2021. Accessed: 2024-05-24.
    [34] LoopNet. Coworking space available in jersey city. https://www.loopnet.com/Listing/185-Hudson-St-Jersey-City-NJ/4390588/, March 18 2024. Accessed:2024-05-24.
    [35] Alexander Walter. Foster + partners selected to design alibaba’s new, algorithm guided shanghai hq. https://bustler.net/news/7634/foster-partners-selected-to
    design-alibaba-s-new-algorithm-guided-shanghai-hq, January 8 2020. Accessed:2024-05-24.
    [36] Archimorphic.Ningbo yinzhou civic center/archimorphic.
    https://www.archdaily.cn/cn/919846/zhu-bo-yin-zhou-shi-min-zhong-xin-zhuhu-jian-zhu-she-ji-shi-wu-suo, July 02 2019. Accessed: 2024-05-24.
    [37] MikhailNilov. Frompexels. https://www.pexels.com/photo/top-view-of-a-building
    8413659/, June 20 2021. Accessed: 2024-05-24.
    [38] TUBARONESPHOTOGRAPHY. Frompexels. https://www.pexels.com/zh-tw/photo/16337699/. Accessed: 2024-05-24.
    [39] Willian Justen de Vasconcellos. From pexels. https://www.pexels.com/zh-tw/photo/18734919/, October 14 2023. Accessed: 2024-05-24.
    [40] HumzaDeas. Newyorkcentral station. https://read01.com/3GaAPd4.html, January 12 2018. Accessed: 2024-05-24.
    [41] Raunaq Sachdev. From pexels. https://www.pexels.com/zh-tw/, March 04 2023.
    [42] David Melgar. From pexels. https://www.pexels.com/zh-tw/photo/20861751/.
    [43] Pexels. From pexels. https://www.pexels.com/zh-tw/. Accessed: 2024-05-24.
    [44] Stability Analysis of High-Performance Drones With Suspended Payloads, volume Volume 8: 31st Conference on Mechanical Vibration and Noise of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 08 2019. doi: 10.1115/DETC2019-97947. URL https://doi.org/10.1115/DETC2019-97947.
    [45] Lauren Nagel. How does drone payload affect flight time. https://www.tytorobotics.com/blogs/articles/how-does-drone-payload-affect-flight-time,May 24 2024. Accessed: 2024-07-15.
    [46] Kuan-Wen Chen, Ming-Ru Xie, Yu-Min Chen, Ting-Tsan Chu, and Yi-Bing Lin.Dronetalk: An internet-of-things-based drone system for last-mile drone delivery. IEEE Transactions on Intelligent Transportation Systems, 23(9):15204–15217,
    2022. doi: 10.1109/TITS.2021.3138432.
    Description: 碩士
    國立政治大學
    資訊科學系
    111753127
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111753127
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    312701.pdf37690KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback