Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/154210
|
Title: | 多旋翼無人機目標跟隨與精準空投之技術研究 Technical development on target following and precise airdrop for Multicopter |
Authors: | 朱其霖 Chu, Chi-Lin |
Contributors: | 劉吉軒 Liu, Jyi-Shane 朱其霖 Chu, Chi-Lin |
Keywords: | 多旋翼無人機 目標跟隨 精準定位 精準空投 UAV multirotor drones target following precise positioning precise airdrop |
Date: | 2024 |
Issue Date: | 2024-11-01 11:22:25 (UTC+8) |
Abstract: | 利用無人機來執行空投任務為一種非常重要的應用,在一般民用、人道救援或是軍事應用中都會有空投技術的需求。本研究運用多旋翼無人機機動性強且能夠定點懸停的特性,透過目標追蹤與跟隨演算法使無人機能自主飛行至目標物正上方,進行精準定位,並且使用自由落體空投的方式來進行空投任務的研究。本研究提出自適應的偵測方法來偵測視覺導引標記以有效提升標記在不同光照條件下的準確率與韌性,並透過精準的定位成功使無人機調整至最佳空投位置,以達到精準空投之目的。最後分析實驗結果,並深入探討以多旋翼無人機進行空投任務的應用價值與可行性。 The use of drones for airdrop missions represents a crucial application, with substantial demand across civil, humanitarian, and military sectors. This study leverages the high maneuverability and hovering capabilities of multirotor drones, employing target tracking and following algorithms to enable the drone to autonomously fly directly above the target for precise positioning. The study investigates the use of free fall airdrop methods. An adaptive detection approach is introduced to identify visual guide markers, improving detection accuracy and resilience under varying lighting conditions. Precise positioning guides the drone to the optimal airdrop location, ensuring deployment accuracy. Finally, the experimental results are analyzed, followed by an in-depth discussion on the practical value and feasibility of employing multirotor drones for airdrop missions. |
Reference: | [1] Dimosthenis C. Tsouros, Stamatia Bibi, and Panagiotis G. Sarigiannidis. A review on uav-based applications for precision agriculture. Information, 10(11), 2019.ISSN 2078-2489. doi: 10.3390/info10110349. URL https://www.mdpi.com/2078-2489/10/11/349.
[2] Muhammet Fatih Aslan, Akif Durdu, Kadir Sabanci, Ewa Ropelewska, and Seyfettin Sinan Gültekin. A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 2022. ISSN 2076-3417. doi: 10.3390/app12031047. URL https://www.mdpi.com/2076-3417/12/3/1047.
[3] Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Lúcio André de Castro Jorge, Sarah Narges Fatholahi, Jonathan de Andrade Silva, Edson Takashi Matsubara, Hemerson Pistori, Wesley Nunes Gonçalves, and Jonathan Li. A review on deep learning in uav remote sensing. International Journal of Applied Earth Observation and Geoinformation, 102:102456, 2021. ISSN 1569-8432. doi: https://doi.org/10.1016/j.jag.2021.102456. URL https://www.sciencedirect.com/science/article/pii/S030324342100163X.
[4] Norzailawati Mohd Noor, Alias Abdullah, and Mazlan Hashim. Remote sensing uav/drones and its applications for urban areas: a review. IOP Conference Series: Earth and Environmental Science, 169(1):012003, jun 2018. doi: 10.1088/1755-1315/169/1/012003. URL https://dx.doi.org/10.1088/1755-1315/169/1/012003.
[5] Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ul-lah, and Mohammed H. Alsharif. Towards the unmanned aerial vehicles (uavs): A comprehensive review. Drones, 6(6), 2022. ISSN 2504-446X. doi: 10.3390/drones6060147. URL https://www.mdpi.com/2504 446X/6/6/147.
[6] Yanhua Shao, Xianfeng Tang, Hongyu Chu, Yanying Mei, Zhiyuan Chang, Xiaoqiang Zhang, Huayi Zhan, and Yunbo Rao. Research on target tracking system of quadrotor uav based on monocular vision. In 2019 Chinese Automation Congress(CAC), pages 4772–4775, 2019. doi: 10.1109/CAC48633.2019.8996417.
[7] Mohammed Rabah, Ali Rohan, Mohammad-Hashem Haghbayan, Juha Plosila, and Sung-Ho Kim. Heterogeneous parallelization for object detection and tracking in uavs. IEEE Access, 8:42784–42793, 2020. doi: 10.1109/ACCESS.2020.2977120.
[8] Suet-Peng Yong and Yoon-Chow Yeong. Human object detection in forest with deep learning based on drone’ s vision. In 2018 4th International Conference on Computer and Information Sciences (ICCOINS), pages 1–5, 2018. doi: 10.1109/ICCOINS.2018.8510564.
[9] 彭世逸. 基於深度學習的空拍影片即時人物追蹤, 2018. URL https://hdl.handle.net/11296/49ng8a.
[10] William Andrew, Colin Greatwood, and Tilo Burghardt. Aerial animal biometrics:Individual friesian cattle recovery and visual identification via an autonomous uav with onboard deep inference. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 237–243, 2019. doi: 10.1109/IROS40897.2019.8968555.
[11] 徐光廷. 人工智慧與邊緣運算技術應用於無人機之影像追蹤, 2022. URL https://hdl.handle.net/11296/6cr487.
[12] Wei Zhang, Ke Song, Xuewen Rong, and Yibin Li. Coarse-to-fine uav target tracking with deep reinforcement learning. IEEE Transactions on Automation Science and Engineering, 16(4):1522–1530, 2019. doi: 10.1109/TASE.2018.2877499.
[13] Qin Chen, Xing Long Gao, and Qing Bin Zhang. Novel parafoil guidance with modern multiobjective evolutionary algorithms. In 2021 China Automation Congress(CAC), pages 3056–3061, 2021. doi: 10.1109/CAC53003.2021.9728126.
[14] Hao Sun, Qinglin Sun, Mingwei Sun, Jin Tao, and Zengqiang Chen. Accurate modeling and homing control for parafoil delivery system based on wind disturbance rejection. IEEE Transactions on Aerospace and Electronic Systems, 58(4):2916–2934, 2022. doi: 10.1109/TAES.2022.3141033.
[15] Martin R. Cacan, Edward Scheuermann, Michael Ward, Mark Costello, and Nathan Slegers. Autonomous airdrop systems employing ground wind measurements for improved landing accuracy. IEEE/ASME Transactions on Mechatronics, 20(6):3060–3070, 2015. doi: 10.1109/TMECH.2015.2405851.
[16] P.R. McGill, K.R. Reisenbichler, S.A. Etchemendy, T.C. Dawe, and B.W. Hobson. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (uav). Deep Sea Research Part II: Topical Studies in Oceanography, 58(11):1318–1326, 2011. ISSN 0967-0645. doi: https://doi.org/10.1016/j.dsr2.2010.11.007. URL https://www.sciencedirect.com/science/article/pii/S0967064510003632.
[17] 張簡佳倫. 利用無人載具進行空投應用之研究, 06 2013. URL http://140.116.207.99/handle/987654321/243432.
[18] Bin Xu and Jie Chen. Review of modeling and control during transport airdrop process. International Journal of Advanced Robotic Systems, 13(6):1729881416678142, 2016. doi: 10.1177/1729881416678142. URL https://doi.org/10.1177/1729881416678142.
[19] Burak CİVELEK and Sinan Kivrak. A review on the precision guided airdrop systems. International Journal of Latest Technology in Engineering, Management Applied Science (IJLTEMAS), VIII:13–17, 2019. ISSN 2278-2540.
[20] Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. Real-time optimal path planning and wind estimation using gaussian process regression for precision airdrop. In 2017 American Control Conference (ACC), pages 2582–2587, 2017. doi: 10.23919/ACC.2017.7963341.
[21] Siri H. Mathisen, Vegard Grindheim, and Tor A. Johansen. Approach methods for autonomous precision aerial drop from a small unmanned aerial vehicle. IFACPapersOnLine, 50(1):3566–3573, 2017. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.2017.08.624. URL https://www.sciencedirect.com/science/article/pii/S2405896317310030. 20th IFAC World Congress.
[22] Siri Gulaker Mathisen, Frederik Stendahl Leira, Håkon Hagen Helgesen, Kristoffer Gryte, and Tor Arne Johansen. Autonomous ballistic airdrop of objects from a small fixed-wing unmanned aerial vehicle. Autonomous Robots, 44:859–875, 2020.
[23] Yi Wang, Chunxin Yang, and Han Yang. Neural network-based simulation and prediction of precise airdrop trajectory planning. Aerospace Science and Technology, 120:107302, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2021.107302. URL https://www.sciencedirect.com/science/article/pii/S1270963821008129.
[24] Qinglin Sun, Li Yu, Yuemin Zheng, Jin Tao, Hao Sun, Mingwei Sun, Matthias Dehmer, and Zengqiang Chen. Trajectory tracking control of powered parafoil system based on sliding mode control in a complex environment. Aerospace Science and Technology, 122:107406, 2022. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2022.107406. URL https://www.sciencedirect.com/science/article/pii/S1270963822000803.
[25] An Zhang, Han Xu, Wenhao Bi, and Shuangfei Xu. Adaptive mutant particle swarm optimization based precise cargo airdrop of unmanned aerial vehicles. Applied Soft Computing, 130:109657, 2022. ISSN 1568-4946. doi: https://doi.org/10. 1016/j.asoc.2022.109657. URL https://www.sciencedirect.com/science/article/pii/S1568494622007062.
[26] Fernandez-Cortizas M. Perez-Segui R. et al. Perez-Saura, D. Urban firefighting drones: Precise throwing from uav. Journal of Intelligent Robotic Systems, 108:66, 2023. ISSN 1573-0409. doi: https://doi.org/10.1007/s10846-023-01883-6.
[27] Artur Sagitov, Ksenia Shabalina, Roman Lavrenov, and Evgeni Magid. Comparing fiducial marker systems in the presence of occlusion. In 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), pages 377–382, 2017. doi: 10.1109/ICMSC.2017.7959505.
[28] Elder M. Hemerly. Automatic georeferencing of images acquired by uav’ s. International Journal of Automation and Computing, 2014. ISSN 1751-8520. doi:10.1007/s11633-014-0799-0. URL https://doi.org/10.1007/s11633-014-0799-0.
[29] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi: 10.1109/ 34.888718.
[30] Kun Xiao, Shaochang Tan, Guohui Wang, Xueyan An, Xiang Wang, and Xiangke Wang. Xtdrone: A customizable multi-rotor uavs simulation platform, 2020. |
Description: | 碩士 國立政治大學 資訊科學系 111753123 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0111753123 |
Data Type: | thesis |
Appears in Collections: | [資訊科學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
312301.pdf | | 13502Kb | Adobe PDF | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|