English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114898/145937 (79%)
Visitors : 53923436      Online Users : 1163
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/154059


    Title: Automated breast imaging report generation based on the integration of multiple image features in a metadata format for shared decision-making
    Authors: 羅崇銘
    Lo, Chung-Ming;Chen, Hui-Ru
    Contributors: 圖檔所
    Keywords: computer-aided diagnosis;digital imaging and communications in medicine;image examination;metadata;reporting and data systems
    Date: 2024-08
    Issue Date: 2024-10-25 09:39:47 (UTC+8)
    Abstract: Importance: Medical imaging increases the workload involved in writing reports. Given the lack of a standardized format for reports, reports are not easily used as communication tools. Objective: During medical team–patient communication, the descriptions in reports also need to be understood. Automatically generated imaging reports with rich and understandable information can improve medical quality. Design, setting, and participants: The image analysis theory of Panofsky and Shatford from the perspective of image metadata was used in this study to establish a medical image interpretation template (MIIT) for automated image report generation. Main outcomes and measures: The image information included digital imaging and communications in medicine (DICOM), reporting and data systems (RADSs), and image features used in computer-aided diagnosis (CAD). The utility of the images was evaluated by a questionnaire survey to determine whether the image content could be better understood. Results: In 100 responses, exploratory factor analysis revealed that the factor loadings of the facets were greater than 0.5, indicating construct validity, and the overall Cronbach’s alpha was 0.916, indicating reliability. No significant differences were noted according to sex, age or education. Conclusions and relevance: Overall, the results show that MIIT is helpful for understanding the content of medical images.
    Relation: Health Informatics Journal, Vol.30, No.3, pp.1-14
    Data Type: article
    DOI 連結: https://doi.org/10.1177/14604582241288460
    DOI: 10.1177/14604582241288460
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML115View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback