Reference: | Sait M, Hugenholtz P, Janssen PH. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol. 2002; 4(11):654–66. Hugenholtz et al. (2008) Metagenomics. Nature, 455, 481–483. Burton et al. (2014) Species-Level Deconvolution of Metagenome Assemblies with Hi-C–Based Contact Probability Maps. G3: GENES, GENOMES, GENETICS, 4, 7. Lieberman-Aiden et al. (2009) Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science, 326(5950), 289–293. DeMaere et al. (2019) bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes. Genome Biology, 20, 46. Cheng et al. (2020) Bin3C_SLM: Deconvoluting metagenomic assemblies via Hi-C connect networks. Stalder, T., Press, M.O., Sullivan, S. et al. Linking the resistome and plasmidome to the microbiome. ISME J 13, 2437–2446 (2019). https://doi.org/10.1038/s41396-019-0446-4 Du, Y., Sun, F. HiCBin: binning metagenomic contigs and recovering metagenome-assembled genomes using Hi-C contact maps. Genome Biol 23, 63 (2022). https://doi.org/10.1186/s13059-022-02626-w Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2014. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25: 1043-1055. Yuting Hsu (2022) The Network Analysis of the metagenomic Hi-C contact map and its downstream metagenome assembly Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–2 Waltman L, Eck NJ van. A smart local moving algorithm for large-scale modularity-based community detection. European Phys J B. 2013;86:471. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Statistical Mech Theory Exp. 2008;2008:P10008. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc National Acad Sci. 2008;105:1118–23. Ke Zhang, Chenxi Wang, Liping Sun, Jie Zheng, Prediction of gene co-expression from chromatin contacts with graph attention network, Bioinformatics, Volume 38, Issue 19, October 2022, Pages 4457–4465, https://doi.org/10.1093/bioinformatics/btac535 Ernest YB, Daniel AA. A Review of the Logistic Regression Model with Emphasis on Medical Research. J Data Analysis Information Process. 2019;07:190–207. Hyatt, D., Chen, GL., LoCascio, P.F. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010). https://doi.org/10.1186/1471-2105-11-119 Gao, W., Lin, W., Li, Q. et al. Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerFinder. Nat Protoc 19, 2803–2830 (2024). https://doi.org/10.1038/s41596-024-00999-9 Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 4768–4777. Manchanda, N., Portwood, J.L., Woodhouse, M.R. et al. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. BMC Genomics 21, 193 (2020). https://doi.org/10.1186/s12864-020-6568-2 Hunt, M., Kikuchi, T., Sanders, M. et al. REAPR: a universal tool for genome assembly evaluation. Genome Biol 14, R47 (2013). https://doi.org/10.1186/gb-2013-14-5-r47 |