English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50796080      Online Users : 479
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 教育學院 > 會議論文 >  Item 140.119/153729
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153729


    Title: The application of ChatGPT in literary translation: A case study from Thai to Chinese
    Authors: 莊俊儒
    Ching, Gregory S.;Zuo, Yu;Khotsing, Rapat
    Contributors: 教育學院
    Keywords: Natural Language Processing;ChatGPT translation;Literary Translation;Cultural Context
    Date: 2024-05
    Issue Date: 2024-09-10 13:57:11 (UTC+8)
    Abstract: Natural Language Processing (NLP) is rapidly evolving, yet it still faces challenges in comprehending deep meanings and emotions, handling diverse languages and subtle linguistic nuances. Literary text translation remains particularly tough for machine translation, with limited research focusing on Thai-Chinese translation. This study investigates the Thai biographical essay ‘ ,’ (Mother Nao Hua) comparing quantitative and qualitative aspects of translations by Google Translate, Baidu Translate, and ChatGPT. The goal is to explore the difficulties faced in Thai-Chinese machine translation and how to issue clearer commands for literary translations. Quantitative analysis shows ChatGPT’s translation as the best, followed by Google and Baidu Translate. Modified instructions improved ChatGPT’s translation quality. Qualitative analysis reveals reasons for translation quality variance and machine translation’s literary text issues. It finds challenges in Thai to Chinese translation, suggesting ChatGPT instruction refinement can improve quality. The study proposes three future research directions.
    Relation: Learning Technology for Education Challenges. LTEC 2024. Communications in Computer and Information Science (CCIS,vol. 2082), 台灣社會網絡學會, pp.332-348
    Data Type: conferernce
    DOI 連結: https://doi.org/10.1007/978-3-031-61678-5_24
    DOI: 10.1007/978-3-031-61678-5_24
    Appears in Collections:[教育學院] 會議論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML56View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback