政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/153388
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51219693      Online Users : 907
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153388


    Title: 基於輕量化微調方法之進階檢索模型於改進 文件檢索效能
    Lightweight Fine-Tuning Dense Retrieval Models for Enhancing Document Retrieval Performance
    Authors: 王奕凱
    Wang, I-Kai
    Contributors: 蔡銘峰
    王奕凱
    Wang, I-Kai
    Keywords: 資訊檢索
    大語言模型
    參數高效微調
    低佚適應
    Information Retrieval
    LoRA
    LLM
    PEFT
    Date: 2024
    Issue Date: 2024-09-04 15:01:34 (UTC+8)
    Abstract: 資訊檢索(IR)是一項從大規模文本集合中找到與用戶查詢相關資
    訊的任務。 隨著大型語言模型(PLM)的發展達到了新的高度。 密集
    檢索技術便是透過 將查詢句和文本輸入大型語言模型, 編碼成密集
    向量進行關聯度計算 此項技術能處理語言多樣性和複雜性。 大型預
    訓練語言模型的訓練資源需求高, 因此參數高效率微調(PEFT)如
    適配器、 LoRA(低秩適應)等技術相繼提出, 旨在減少微調參數量
    並保持性能。 然而研究指出,此類方法在資訊檢索任務中效果有限,
    訓練參數過少會影響梯度下降方向,導致模型性能下降。 本研究想利
    用LoRA的靈活性, 在不增加額外訓練參數的情況下, 以LoRA矩陣再
    加權文句的向量, 增進訓練效果, 設計一個更加通用的模型架構,
    並與其他較先進的LoRA技術結合, 以應對PEFT方法在資訊檢索任務
    中的挑戰。
    Information retrieval (IR) is the task of finding information related to
    user queries from large text collections. With the development of large pre-
    trained language models (PLMs) reaching new heights, dense retrieval tech-
    niques have emerged. These techniques involve encoding query sentences
    and texts into dense vectors using large language models to calculate rel-
    evance scores. This approach effectively handles linguistic diversity and
    complexity. However, training large pre-trained language models requires
    substantial resources. Consequently, parameter-efficient fine-tuning (PEFT)
    techniques, such as adapters and LoRA (Low-Rank Adaptation), have been
    proposed to reduce the number of fine-tuning parameters while maintaining
    performance. Nonetheless, studies indicate that these methods have limited
    effectiveness in IR tasks, as too few training parameters can affect the direc-
    tion of gradient descent, leading to degraded model performance. This study
    aims to leverage the flexibility of LoRA to enhance training effectiveness
    without increasing additional training parameters. By re-weighting sentence
    vectors with LoRA matrices, we design a more versatile model architecture.
    This architecture will be combined with other advanced LoRA techniques to
    address the challenges of PEFT methods in IR tasks.
    Reference: A. Aghajanyan, L. Zettlemoyer, and S. Gupta. Intrinsic dimensionality explains the
    effectiveness of language model fine-tuning, 2020.
    [2] V. Boteva, D. Gholipour, A. Sokolov, and S. Riezler. A full-text learning to rank
    dataset for medical information retrieval. In N. Ferro, F. Crestani, M.-F. Moens,
    J. Mothe, F. Silvestri, G. M. Di Nunzio, C. Hauff, and G. Silvello, editors, Advances
    in Information Retrieval, pages 716–722, Cham, 2016. Springer International Pub-
    lishing.
    [3] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu. Bge m3-embedding:
    Multi-lingual, multi-functionality, multi-granularity text embeddings through self-
    knowledge distillation. arXiv preprint arXiv:2402.03216, 2024.
    [4] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient fine-
    tuning of quantized llms. Advances in Neural Information Processing Systems, 36,
    2024.
    [5] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable
    neural networks, 2019.
    [6] S. Hayou, N. Ghosh, and B. Yu. Lora+: Efficient low rank adaptation of large
    models. arXiv preprint arXiv:2402.12354, 2024.
    [7] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Ges-
    mundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In
    International conference on machine learning, pages 2790–2799. PMLR, 2019.
    [8] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
    W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
    arXiv:2106.09685, 2021.
    [9] N. Hyeon-Woo, M. Ye-Bin, and T.-H. Oh. Fedpara: Low-rank hadamard product
    for communication-efficient federated learning, 2023.
    35
    [10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
    arXiv:1412.6980, 2014.
    [11] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. Vera: Vector-based random matrix
    adaptation, 2024.
    [12] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Ep-
    stein, I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W.
    Chang, A. Dai, J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: a benchmark
    for question answering research. Transactions of the Association of Computational
    Linguistics, 2019.
    [13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. K¨uttler,
    M. Lewis, W.-t. Yih, T. Rockt¨aschel, et al. Retrieval-augmented generation for
    knowledge-intensive nlp tasks. Advances in Neural Information Processing Sys-
    tems, 33:9459–9474, 2020.
    [14] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation.
    arXiv preprint arXiv:2101.00190, 2021.
    [15] Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, and T. Zhao. Loftq:
    Lora-fine-tuning-aware quantization for large language models. arXiv preprint
    arXiv:2310.08659, 2023.
    [16] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and
    M.-H. Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
    arXiv:2402.09353, 2024.
    [17] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. Gpt understands,
    too. AI Open, 2023.
    [18] K. Lu, A. Grover, P. Abbeel, and I. Mordatch. Pretrained transformers as universal
    computation engines, 2021.
    [19] X. Ma, J. Guo, R. Zhang, Y. Fan, and X. Cheng. Scattered or connected? an opti-
    mized parameter-efficient tuning approach for information retrieval. In Proceedings
    of the 31st ACM International Conference on Information & Knowledge Manage-
    ment, pages 1471–1480, 2022.
    [20] M. Maia, S. Handschuh, A. Freitas, B. Davis, R. McDermott, M. Zarrouk, and
    A. Balahur. Www’18 open challenge: Financial opinion mining and question an-
    swering. In Companion Proceedings of the The Web Conference 2018, WWW ’18,
    page 1941–1942, Republic and Canton of Geneva, CHE, 2018. International World
    Wide Web Conferences Steering Committee.
    36
    [21] N. Muennighoff, H. Su, L. Wang, N. Yang, F. Wei, T. Yu, A. Singh, and D. Kiela.
    Generative representational instruction tuning. arXiv preprint arXiv:2402.09906,
    2024.
    [22] J. Pfeiffer, A. Kamath, A. R¨uckl´e, K. Cho, and I. Gurevych. Adapterfusion: Non-
    destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
    2020.
    [23] S.-A. Rebuffi, H. Bilen, and A. Vedaldi. Learning multiple visual domains with
    residual adapters. Advances in neural information processing systems, 30, 2017.
    [24] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
    bert-networks. arXiv preprint arXiv:1908.10084, 2019.
    [25] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al.
    Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.
    [26] T. Salimans and D. P. Kingma. Weight normalization: A simple reparameterization
    to accelerate training of deep neural networks, 2016.
    [27] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:
    smaller, faster, cheaper and lighter, 2020.
    [28] N. Thakur, N. Reimers, J. Daxenberger, and I. Gurevych. Augmened sbert: Data
    augmentation method for improving bi-encoders for pairwise sentence scoring tasks.
    arXiv preprint arXiv:2010.08240, 2020.
    [29] N. Thakur, N. Reimers, A. R¨uckl´e, A. Srivastava, and I. Gurevych. Beir: A heteroge-
    nous benchmark for zero-shot evaluation of information retrieval models. arXiv
    preprint arXiv:2104.08663, 2021.
    [30] D. Wadden, S. Lin, K. Lo, L. L. Wang, M. van Zuylen, A. Cohan, and H. Hajishirzi.
    Fact or fiction: Verifying scientific claims. arXiv preprint arXiv:2004.14974, 2020.
    [31] L. Wang, N. Yang, X. Huang, B. Jiao, L. Yang, D. Jiang, R. Majumder, and F. Wei.
    Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint
    arXiv:2212.03533, 2022.
    [32] A. Waswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,
    and I. Polosukhin. Attention is all you need. In NIPS, 2017.
    [33] L. Xu, H. Xie, S.-Z. J. Qin, X. Tao, and F. L. Wang. Parameter-efficient fine-tuning
    methods for pretrained language models: A critical review and assessment. arXiv
    preprint arXiv:2312.12148, 2023.

    [34] S.-Y. Yeh, Y.-G. Hsieh, Z. Gao, B. B. W. Yang, G. Oh, and Y. Gong. Navigating
    text-to-image customization: From lycoris fine-tuning to model evaluation, 2024.
    [35] Q. Zhang, M. Chen, A. Bukharin, P. He, Y. Cheng, W. Chen, and T. Zhao. Adaptive
    budget allocation for parameter-efficient fine-tuning. In The Eleventh International
    Conference on Learning Representations, 2023.
    Description: 碩士
    國立政治大學
    資訊科學系
    111753169
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111753169
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    316901.pdf1890KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback