English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51577788      Online Users : 903
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/153368
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153368


    Title: 貝氏相關 t 檢定之改進及其在交叉驗證資料中的應用
    Enhancements to the Bayesian Correlated t-Test and Its Application to Cross-Validation Data
    Authors: 許育菱
    Xu, Yu-Ling
    Contributors: 翁久幸
    Weng, Chui-Hsing
    許育菱
    Xu, Yu-Ling
    Keywords: 交叉驗證
    準確率
    統計檢定
    Correlated t-test
    Bayesian correlated t-test
    影像增強
    圖像分類
    Cross-validation
    Accuracy
    Statistical testing
    Correlated t-test
    Bayesian correlated t-test
    Image enhancement
    Image classification
    Date: 2024
    Issue Date: 2024-09-04 14:57:11 (UTC+8)
    Abstract: 在統計學與機器學習任務中,交叉驗證(Cross-validation)是一種常見的方法,用於將原始數據集劃分為多個子集,使模型在不同的數據子集上反覆進行訓練和驗證。通過分析交叉驗證後產生的準確率資料,可以評估模型的效能和穩健性,亦能比較不同模型下的準確率差異。本研究針對交叉驗證資料進行統計檢定,使用了Correlated t-test、Bayesian correlated t-test,並提出修正Bayesian correlated t-test共變異數矩陣後的Bayesian correlated t-test2。使用模擬資料的研究結果顯示,Bayesian correlated t-test2在多數情況下表現優於Bayesian correlated t-test。而在結論上,Bayesian correlated t-test2與Correlated t-test十分相似,但是Bayesian correlated t-test2的優勢是能夠提供更多的額外資訊。此外,在實際資料分析上,本研究將Correlated t-test、Bayesian correlated t-test、Bayesian correlated t-test2用於比較影像增強方法對圖像分類表現的影響,發現在多數資料集中,Contrast Stretching處理後的分類結果較佳,而 Sharpening處理則相對較差。
    In statistical and machine learning tasks, cross-validation is a common method used to divide the original dataset into multiple subsets, allowing the model to be trained and validated repeatedly on different subsets of the data. By analyzing the accuracy data generated from cross-validation, we can evaluate the model's performance and robustness, as well as compare the accuracy differences under different models. This study conducts a statistical testing of cross-validation data, utilizing the Correlated t-test and the Bayesian correlated t-test, and proposes the Bayesian correlated t-test2, which modifies the covariance matrix of the Bayesian correlated t-test. The results from simulated data show that the Bayesian correlated t-test2 outperforms the Bayesian correlated t-test in most cases. While the Bayesian correlated t-test2 is very similar to the Correlated t-test in conclusion, its advantage lies in providing additional information. Furthermore, in practical data analysis, this study applies the Correlated t-test, Bayesian correlated t-test, and Bayesian correlated t-test2 to compare the impact of image enhancement methods on image classification performance. It was found that, in most datasets, the classification results after Contrast Stretching treatment were better, while the results after Sharpening treatment were relatively poor.
    Reference: Benavoli, A., Corani, G., Demšar, J., and Zaffalon, M. (2017). Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis. Journal of Machine Learning Research, 18(77):1–36.
    Corani, G. and Benavoli, A. (2015). A bayesian approach for comparing cross-validated algorithms on multiple data sets. Machine Learning, 100(2):285–304.
    Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7:1–30.
    Demšar, J. (2008). On the appropriateness of statistical tests in machine learning. In Workshop on Evaluation Methods for Machine Learning in Conjunction with ICML, page 65.
    Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895–1923.
    Gonzalez, R. C. (2009). Digital image processing. Pearson Education India.
    Jain, A. (1989). Fundamentals of digital image processing. Prentice-Hall.
    Jeffreys, H. (1935). Some tests of significance, treated by the theory of probability. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 31, pages 203–222. Cambridge University Press.
    Jeffreys, H. (1998). The theory of probability. OUP Oxford.
    Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430):773–795.
    Kitchen, L. and Rosenfeld, A. (1982). Gray-level corner detection. Pattern Recognition Letters, 1(2):95–102.
    Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images. Technical report, University of Toronto.
    Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic Press.
    Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142(2):573.
    Nadeau, C. and Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52(3):239–281.
    Description: 碩士
    國立政治大學
    統計學系
    111354026
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354026
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    402601.pdf2908KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback