English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51576074      Online Users : 864
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/153363
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153363


    Title: 監控多維度品質變異數比的EWMA管制圖
    EWMA Control Charts for Monitoring Multi-Dimensional Ratios of Process Variances
    Authors: 林正和
    Lin, Cheng-Ho
    Contributors: 楊素芬
    Yang, Su-Fen
    林正和
    Lin, Cheng-Ho
    Keywords: 多元統計製程控制
    變異數比值
    不偏估計式
    資料深度
    指數加權移動平均
    無分佈假設
    Multivariate statistical process control
    Ratios of variances
    Unbiased estimators
    Data depth
    Exponentially weighted moving average
    Distribution-Free
    Date: 2024
    Issue Date: 2024-09-04 14:56:11 (UTC+8)
    Abstract: 近年來,在工業製造或服務過程中,多變量品質變數的多維度變異數比的監控在某些實務製程中至關重要,但是,在統計製程管制 (SPC) 的研究中,尚無文獻探討。因此,本研究提出了新的管制圖以追蹤多個兩相依母體變異數之比值製程是否穩定的狀況。
    在此研究中,我們分別考慮已知分佈為多元常態分配 (multivariate normal distribution) 、多元伽瑪分配 (multivariate gamma distribution) 和多元偏態分配 (multivariate skew normal distribution) 之下,以三個不同方法建立指數加權移動平均 (EWMA) 管制圖來追蹤多個相依母體變異數之比值。第一種方法是將兩個母體變異數線性組合的不偏估計量轉為T^2統計量,再分別根據樣本大小來建立EWMA-DT管制圖與近似的卡方管制圖,第二種方法則是使用資料深度 (data depth)的方法來建立EWMA-DU管制圖監控多個變異數之比值。第三種方法是以符號方法 (sign method) 來建立EWMA-DS管制圖監控多個變異數之比值。接著,以數值分析計算此三種管制圖之管制界線並考慮在失控的變動幅度相同下的平均連串長度來評估此三種管制圖的偵測能力。
    最後,我們選出兩個偵測能力比較好的管制圖,並以牛奶與半導體的實際數據來說明它們的應用,並驗證其偵測能力。
    In recent years, monitoring the multiple ratios of variances of multiple quality variables has become crucial in industrial manufacturing and service processes. However, there is a lack of research on this topic in statistical process control study. To address this gap, we propose three control charts for tracking the stability and variations of variance ratios for the multiple dependent process variables.
    In this study, we consider the multivariate normal, multivariate gamma and multivariate skew normal distributions, and develop three new exponentially weighted moving average (EWMA) control charts to monitor the multiple ratios of variances. The first method transforms the unbiased estimators of linear combinations of two population variances into T² statistic to construct the EWMA-DT control chart and the approximate chi-square control charts based on small or large sample sizes. The second method uses data depth procedure to create the EWMA-DU control chart. The third method employs the sign method to develop the EWMA-DS control chart. We evaluate the detection capabilities of these three control charts by calculating the average run length under the out-of-control processes.
    Finally, we select two better performance control charts to demonstrate their application and effectiveness in the real data using the milk and semiconductor processes respectively.
    Reference: [1] Alt, F. B. (1982). Multivariate quality control: state of the art. In ASQC Quality Congress Transactions (pp. 886-893). Milwaukee, WI: American Society for Quality Control.
    [2] Aitchison, J. (2005). A concise guide to compositional data analysis. In Compositional Data Analysis Workshop.
    [3] Azzalini, A., & Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 579-602.
    [4] Azzalini, A., & Valle, A. D. (1996). The multivariate skew-normal distribution. Biometrika, 83(4), 715-726.
    [5] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks. Quality Engineering, 16(4), 613-623.
    [6] Balakrishnan, N., Triantafyllou, I. S., & Koutras, M. V. (2010). A distribution-free control chart based on order statistics. Communications in Statistics—Theory and Methods, 39(20), 3652-3677.
    [7] Celano, G., Castagliola, P., Faraz, A., & Fichera, S. (2014). Statistical performance of a control chart for individual observations monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 30(8), 1361-1377.
    [8] Celano, G., & Castagliola, P. (2016). Design of a phase II control chart for monitoring the ratio of two normal variables. Quality and Reliability Engineering International, 32(1), 291-308.
    [9] Cho, E., & Cho, M. J. (2008). Variance of sample variance. Section on Survey Research Methods–JSM, 2, 1291-1293.
    [10] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303.
    [11] de Oliveira Moraes, D. A. (2014). A self-oriented control chart for multivariate process location.
    [12] Hotelling, H. (1949), "Multivariate Quality Control," in Techniques in Statistical Analysis, eds. C. Eisenhart, M. W. Hastay, and W. A. Wallis, New York: McGraw-Hill.
    [13] Lee, R. Y., Holland, B. S., & Flueck, J. A. (1979). Distribution of a ratio of correlated gamma random variables. SIAM Journal on Applied Mathematics, 36(2), 304-320.
    [14] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), 1380-1387.
    [15] McCann, M., & Johnston, A. (2008). SECOM Data Set Center for Machine Learning and Intelligent Systems. University of California, Irvine, CA.
    [16] Nguyen, H. D., Tran, K. P., & Goh, T. N. (2020). Variable sampling interval control charts for monitoring the ratio of two normal variables. Journal of Testing and Evaluation, 48(3), 2505-2529.
    [17] Prabawani, N. A., & Mashuri, M. (2020, March). Performance of robust EWMA control chart for variability process using non-normal data. In Journal of Physics: Conference Series (Vol. 1511, No. 1, p. 012054). IOP Publishing.
    [18] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technimetrics, 1, 239-250.
    [19] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), 43-87.
    [20] Shu, L., & Fan, J. (2018). A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances. Naval Research Logistics (NRL), 65(4), 317-330.
    [21] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert Systems with Applications, 38(5), 6239-6243.
    [22] Yang, S. F., & Arnold, B. C. (2016). A new approach for monitoring process variance. Journal of Statistical Computation and Simulation, 86(14), 2749-2765.
    [23] Yang, S. F., Lin, Y. C., & Yeh, A. B. (2021). A Phase II depth‐based variable dimension EWMA control chart for monitoring process mean. Quality and Reliability Engineering International, 37(6), 2384-2398.
    [24] Yang, S. F., Arnold, B. C., Liu, Y. L., Lu, M. C., & Lu, S. L. (2022). A new phase II EWMA dispersion control chart. Quality and Reliability Engineering International, 38(4), 1635-1658.
    [25] Yang, S. F., Yeh, A. B., & Chou, C. C. (2023). A phase II multivariate EWMA chart for monitoring multi-dimensional ratios of process means with individual observations. Computers & Industrial Engineering, 183, 109490.
    Description: 碩士
    國立政治大學
    統計學系
    111354017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111354017
    Data Type: thesis
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    401701.pdf17050KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback