政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/153249
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51590654      Online Users : 644
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153249


    Title: 住宅次市場間動態關係之探討 -以臺北市為例
    Dynamics of the Taipei Residential Housing Submarket
    Authors: 吳侲嶢
    Wu, Chen-Yao
    Contributors: 朱芳妮
    Chu, Fang-Ni
    吳侲嶢
    Wu, Chen-Yao
    Keywords: 次市場
    動態關係
    房價擴散
    漣漪效應
    Submarket
    Dynamics
    Housing Price Diffusion
    Ripple Effect
    Date: 2024
    Issue Date: 2024-09-04 14:27:30 (UTC+8)
    Abstract: 居住是每個人的基本需求,但隨著國內房地產市場價格近年來直線飆漲,買不起房已成為現今的普遍現象。面對高房價問題,我國政府也試圖透過政策抑制房價上漲,可成果卻不如預期。臺北市作為臺灣的首都,平均住宅價格長年位居全台之首,也是投資者青睞的區域。在國內過往的研究中,大多數都是探討空間或區域次市場的房價擴散關係,少有對於產品次市場之探討,然而產品次市場間的動態關係對於瞭解住宅市場變化也是極為重要的,因此本研究將以臺北市各行政區與三種住宅產品類型之住宅價格指數進行時間序列模型實證分析,藉由同時探討兩種不同類型次市場之動態關係,瞭解住宅各次市場間價格之傳遞關係。

    研究結果顯示,臺北市不同住宅產品(公寓、大樓及小宅)次市場間存在長期均衡關係,三者間有相互之動態關係。小宅、公寓對大樓之房價指數為單向因果關係,且其中小宅最容易受到外生變數之影響。而臺北市行政區空間次市場間之住宅價格,由大安區作為中心點,其正向房價衝擊會對其他行政區有正向之影響,顯著影響之時間點則因地理位置之不同而有所差異,即行政區間有漣漪效應之產生,本研究根據實證結果之分析,發現不論是以住宅產品類型劃分次市場,或以行政區劃分空間次市場,次市場之間具有價格動態影響關係。
    Having house is a basic need for everyone, but the domestic housing price has skyrocketed in recent years, the inability to afford a home has become a common phenomenon today.In order to cap rising housing prices, our government has introduced many housing policies, but the results have been less than expected. As the capital of Taiwan, Taipei City has long held the highest average housing prices in the country and it’s also a favored area for investors. In past domestic research, most experts have explored the diffusion of spatial or regional submarkets, with little discussion on the product submarket. However, the dynamic relationships of the product submarket are also crucial for understanding the housing market. Therefore, this study will conduct an empirical analysis of time series models on the housing price indices of various administrative districts and three types of residential products in Taipei City. By simultaneously exploring the dynamic relationships between two different types of submarkets, this study aims to understand the price diffusion relationships among different submarkets.

    The results of the study show that there is a long-term equilibrium relationship between different types of residential product submarkets (apartments, buildings, and small houses) in Taipei City. There are dynamic interactions among these three types. The housing price indices of small houses and apartments tend to influence the housing price index of buildings, and the small houses being the most susceptible to exogenous variables. According to the district empirical results, when Da'an District is the center of the housing prices ripple. It’s positive housing price shock has also caused positive housing price responses from other districts, but the timing of these significant impacts varies are based on geographical location, indicating a ripple effect among the districts. Based on the empirical analysis, this study finds that whether submarkets are divided by residential product types or by administrative districts, there are dynamic price relationships between submarkets.
    Reference: 謝博明,2015,「住宅次市場界定及住宅價格空間分析:以新升格之台南市為例」,
    『住宅學報』,24(1) : 29-54。

    林秋瑾,1996,「臺灣區域性住宅價格模式之建立」,『政大地政學報』,1(1):29-49。

    楊宗憲、蕭喻方、張毓蓁、林佩佳、陳巧倫、邱宜芬、林婉茹,2014,「議價空
    間與住宅次市場關係之研究」,『國立屏東商業技術學院學報』,16:p277-290。

    蔡怡純、陳明吉,2008,「台北地區不動產價格波動之不對稱性探討」,『住宅學
    報』,17(2):1-11。

    范清益,2010,「買屋賣屋殺很大!-議價空間與住宅不動產市場流動性之影響
    因素分析」,『土地問題研究季刊』,9(3):82-91。

    花敬群、張金鶚,1999,「住宅空間次市場價格比例與市場規模之關係」,『都市
    與計劃』,26(1):79-94。

    朱芳妮、張金鶚、陳淑美,2008,「已購屋者與購屋搜尋者之購屋需求決策比較
    分析—兼論顯示性偏好及敘述性偏好之差異」,『都市與計畫』,35(4):339-359。

    李泓見、張金鶚、花敬群,2006,「台北都會區不同住宅產品價差之研究」,『土
    地問題研究』,9(1):63-87。

    陳彥仲,1997,「住宅選擇之程序性決策模式」,『住宅學報』, 5 :37-49。

    林祖嘉、林素菁,2009,「住宅次市場定義合理性之探討:因素分析法之應用」,
    『都市與計劃』,36(2):133-153。

    汪芷均,2019,「臺灣北部區域房價傳遞之研究─以房價漣漪效應觀點」,國立政
    治大學地政學研究所碩士論文。

    林左裕、程于芳,2014,「影響不動產市場之從眾行為與總體經濟因素之研究」,
    『應用經濟論叢』,95:61-99。

    林秋瑾、黃珮玲,1995,「住宅價格與總體經濟變數關係之研究—以向量自我迴
    歸模式 (VAR) 進行實證」,『政大學報』,71:143-160。

    吳森田,1994,「所得, 貨幣與房價-近二十年台北地區的觀察」,『住宅學報』,
    (2):49-65。

    梅強、林尚毅,2017,「臺灣總體經濟變動資料對六都房價之影響分析」,『亞太
    經濟管理評論』,21(1):33-48。

    Kounin, J. (1977). Discipline and group management. Nova Iorque: RE Krieger
    Publishing.

    Adair, A., McGreal, S., Smyth, A., Cooper, J., & Ryley, T. (2000). House prices and
    accessibility: The testing of relationships within the Belfast urban area. Housing
    studies, 15(5), 699-716.

    Aksoy Khurami, E., & Özdemir Sarı, Ö. B. (2022). Trends in housing markets during
    the economic crisis and COVID-19 pandemic: Turkish case. Asia-Pacific Journal
    of Regional Science, 6(3), 1159-1175.

    Allen, M. T., Springer, T. M., & Waller, N. G. (1995). Implicit pricing across residential
    rental submarkets. The Journal of Real Estate Finance and Economics, 11, 137-
    151.

    Bangura, M., & Lee, C. L. (2020). House price diffusion of housing submarkets in
    Greater Sydney. Housing Studies, 35(6), 1110-1141.

    Berg, L. (2002). Prices on the second-hand market for Swedish family houses:
    correlation, causation and determinants. European Journal of housing policy, 2(1),
    1-24.
    Bhavsar, V. (2023). Investigating house price diffusion across eight major cities of India.
    Journal of Housing and the Built Environment, 38(2), 1241-1261.

    Bourassa, S. C., Hoesli, M., & Peng, V. S. (2003). Do housing submarkets really matter?.
    Journal of Housing Economics, 12(1), 12-28.

    Chen, P. F., Chien, M. S., & Lee, C. C. (2011). Dynamic modeling of regional house
    price diffusion in Taiwan. Journal of Housing Economics, 20(4), 315-332.

    Chen, M., Chun, Y., & Griffith, D. A. (2023). Delineating housing submarkets using
    space–time house sales data: spatially constrained data-driven approaches. Journal
    of Risk and Financial Management, 16(6), 291.

    Chow, G. C., & Lin, A. L. (1971). Best linear unbiased interpolation, distribution, and
    extrapolation of time series by related series. The review of Economics and
    Statistics, 372-375.

    Clapp, J. M., & Tirtiroglu, D. (1994). Positive feedback trading and diffusion of asset
    price changes: Evidence from housing transactions. Journal of Economic Behavior
    & Organization, 24(3), 337-355.

    Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for
    autoregressive time series with a unit root. Journal of the American statistical
    association, 74(366a), 427-431.

    Duca, J. V., Hoesli, M., & Montezuma, J. (2021). The resilience and realignment of
    house prices in the era of Covid-19. Journal of European Real Estate Research,
    14(3), 421-431.

    Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction:
    representation, estimation, and testing. Econometrica: journal of the Econometric
    Society, 251-276.

    Goodman, A. C., & Thibodeau, T. G. (1998). Housing market segmentation. Journal of
    housing economics, 7(2), 121-143.

    Gong, Y., Hu, J., & Boelhouwer, P. J. (2016). Spatial interrelations of Chinese housing
    markets: Spatial causality, convergence and diffusion. Regional Science and
    Urban Economics, 59, 103-117.

    Granger, C. W. (1969). Investigating causal relations by econometric models and
    cross-spectral methods. Econometrica: journal of the Econometric Society, 424-
    438.

    Hui, H. C. (2011). Cycles in landed and non‐landed housing sub‐markets in Malaysia.
    International Journal of Housing Markets and Analysis, 4(2), 144-154.

    Johansen, S. (1988). Statistical analysis of cointegration vectors. Journal of economic
    dynamics and control, 12(2-3), 231-254.

    Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on
    cointegration—with appucations to the demand for money. Oxford Bulletin of
    Economics and statistics, 52(2), 169-210.

    Keskin, B., & Watkins, C. (2017). Defining spatial housing submarkets: Exploring the
    case for expert delineated boundaries. Urban Studies, 54(6), 1446-1462.

    Lee, C. C., & Chien, M. S. (2011). Empirical modelling of regional house prices and
    the ripple effect. Urban Studies, 48(10), 2029-2047.

    Lee, M. T., Lee, M. L., & Lin, S. H. (2014). Trend properties, cointegration, and
    diffusion of presale house prices in Taiwan: Can Taipei's house prices ripple out?.
    Habitat International, 44, 432-441.

    Liu, S., & Su, Y. (2021). The impact of the COVID-19 pandemic on the demand for
    density: Evidence from the US housing market. Economics letters, 207, 110010.

    Luo, Z. Q., Liu, C., & Picken, D. (2007). Housing price diffusion pattern of Australia's
    state capital cities. International Journal of Strategic Property Management, 11(4),
    227-242.

    Mei-Se, C., Pei-Fen, C., & Te-Chung, H. (2015). House Price Diffusion and Cross-
    Border House Price Dynamics in the Greater China Economic Area.

    Meen, G. (1999). Regional house prices and the ripple effect: a new interpretation.
    Housing studies, 14(6), 733-753.

    McCord, M., Lo, D., McCord, J., Davis, P. T., & Haran, M. (2019). Measuring the
    cointegration of housing types in Northern Ireland. Journal of Property Research,
    36(4), 343-366.

    McCord, M., Lo, D., McCord, J., Davis, P., Haran, M., & Turley, P. (2022). The impact
    of COVID-19 on house prices in Northern Ireland: price persistence, yet d
    ivergent?. Journal of Property Research, 39(3), 237-267.

    Pollakowski, H. O., & Ray, T. S. (1997). Housing price diffusion patterns at different
    aggregation levels: an examination of housing market efficiency. Journal of
    Housing Research, 107-124.

    Renaud, B., Zhang, M., & Koeberle, S. (1998). How the Thai real estate boom undid
    financial institutions: What can be done now. Competitiveness and Sustainable
    Economic Recovery in Thailand, 2, 103-151.
    Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving
    average models of unknown order. Biometrika, 71(3), 599-607.

    Sims, C. A. (1980). Macroeconomics and reality. Econometrica: journal of the
    Econometric Society, 1-48.

    Teye, A. L., de Haan, J., & Elsinga, M. G. (2018). Risks and interrelationships of
    subdistrict house prices: the case of Amsterdam. Journal of Housing and the Built
    Environment, 33, 209-226.

    Tian, C., Peng, X., & Zhang, X. (2021). COVID-19 pandemic, urban resilience and real
    estate prices: the experience of cities in the Yangtze River Delta in China. Land,
    10(9), 960.

    Tsai, I. C. (2018). The cause and outcomes of the ripple effect: housing prices and
    transaction volume. The Annals of Regional Science, 61(2), 351-373.

    Zhang, L., Hui, E. C., & Wen, H. (2017). The regional house prices in China: Ripple
    effect or differentiation. Habitat International, 67, 118-128.
    Description: 碩士
    國立政治大學
    地政學系
    111257010
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111257010
    Data Type: thesis
    Appears in Collections:[Department of Land Economics] Theses

    Files in This Item:

    File Description SizeFormat
    701001.pdf3336KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback