English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52202473      Online Users : 996
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/153165
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153165


    Title: 對神經網路模型的個體公平性進行動態型式測試
    Concolic Testing on Individual Fairness of Neural Network Models
    Authors: 黃名儀
    Huang, Ming-I
    Contributors: 郁方
    洪智鐸

    Yu, Fang
    Hong, Chih-Duo

    黃名儀
    Huang, Ming-I
    Keywords: 政治大學
    深度神經網路
    動態符號執行測試
    公平性測試
    NCCU
    Concolic Testing
    Fairness Testing
    Deep Neural Networks
    Date: 2024
    Issue Date: 2024-09-04 14:06:44 (UTC+8)
    Abstract: 深度神經網絡(DNNs)在刑事司法、招聘實踐和金融貸款決策等關鍵社會領域中變得越來越普遍。然而,這些應用往往無意中延續了偏見,導致對個體的歧視,從而限制了它們對社會的更廣泛利益。本研究針對深度神經網絡(DNNs)中的個體公平性進行探討。與以往研究相比,我們的研究在系統性公平性檢查方面做出了貢獻,提供了一種自動化和嚴謹的方法來識別DNN中的不公平實例。
    Deep neural networks (DNNs) are becoming more prevalent in crucial societal domains such as criminal justice, hiring practices, and financial lending decisions. However, these applications frequently unintentionally perpetuate biases that lead to individual discrimination, thus constraining their broader societal benefits. This study addresses individual fairness in deep neural networks (DNNs). Compared to previous work, our research contributes on systematic fairness checking, offering an automatic and rigorous approach to identify instances of unfairness in DNNs.
    Reference: Aggarwal, A., Lohia, P., Nagar, S., Dey, K., and Saha, D. (2019). Black box fairness
    testing of machine learning models. In Proceedings of the 2019 27th ACM Joint Meeting
    on European Software Engineering Conference and Symposium on the Foundations of
    Software Engineering, pages 625–635.
    Albarghouthi, A., D’Antoni, L., Drews, S., and Nori, A. V. (2017). Fairsquare: prob-
    abilistic verification of program fairness. Proceedings of the ACM on Programming
    Languages, 1(OOPSLA):1–30.
    Awwad, Y., Fletcher, R., Frey, D., Gandhi, A., Najafian, M., and Teodorescu, M. (2020).
    Exploring fairness in machine learning for international development. Technical report,
    CITE MIT D-Lab.
    Bastani, O., Zhang, X., and Solar-Lezama, A. (2019). Probabilistic verification of fairness
    properties via concentration. Proceedings of the ACM on Programming Languages,
    3(OOPSLA):1–27.
    Biswas, S. and Rajan, H. (2020). Do the machine learning models on a crowd sourced
    platform exhibit bias? an empirical study on model fairness. In Proceedings of the 28th
    ACM joint meeting on European software engineering conference and symposium on
    the foundations of software engineering, pages 642–653.
    Biswas, S. and Rajan, H. (2021). Fair preprocessing: towards understanding compositional fairness of data transformers in machine learning pipeline. In Proceedings of the
    29th ACM joint meeting on European software engineering conference and symposium
    on the foundations of software engineering, pages 981–993.
    Biswas, S. and Rajan, H. (2023). Fairify: Fairness verification of neural networks. In
    2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages
    1546–1558. IEEE.
    Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
    L. D., Monfort, M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-
    driving cars. arXiv preprint arXiv:1604.07316.
    Buolamwini, J. and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities
    in commercial gender classification. In Conference on fairness, accountability and
    transparency, pages 77–91. PMLR.
    Chakraborty, J., Majumder, S., Yu, Z., and Menzies, T. (2020). Fairway: a way to build
    fair ml software. In Proceedings of the 28th ACM Joint Meeting on European Software
    Engineering Conference and Symposium on the Foundations of Software Engineering,
    pages 654–665.
    Chen, Y.-F., Tsai, W.-L., Wu, W.-C., Yen, D.-D., and Yu, F. (2021). Pyct: A python con-
    colic tester. In Programming Languages and Systems: 19th Asian Symposium, APLAS
    2021, Chicago, IL, USA, October 17–18, 2021, Proceedings 19, pages 38–46. Springer.
    Chen, Z., Zhang, J. M., Sarro, F., and Harman, M. (2024). Fairness improvement with
    multiple protected attributes: How far are we? In Proceedings of the IEEE/ACM 46th
    International Conference on Software Engineering, pages 1–13.
    Dastin, J. (2022). Amazon scraps secret ai recruiting tool that showed bias against women.
    In Ethics of data and analytics, pages 296–299. Auerbach Publications.
    Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through
    awareness. In Proceedings of the 3rd innovations in theoretical computer science con-
    ference, pages 214–226.
    Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., and Venkatasubramanian, S.
    (2015). Certifying and removing disparate impact. In proceedings of the 21th ACM
    SIGKDD international conference on knowledge discovery and data mining, pages
    259–268.
    Flores, A. W., Bechtel, K., and Lowenkamp, C. T. (2016). False positives, false nega-
    tives, and false analyses: A rejoinder to machine bias: There’s software used across
    the country to predict future criminals. and it’s biased against blacks. Fed. Probation,
    80:38.
    Galhotra, S., Brun, Y., and Meliou, A. (2017). Fairness testing: testing software for dis-
    crimination. In Proceedings of the 2017 11th Joint meeting on foundations of software
    engineering, pages 498–510.
    Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., and Vechev, M.
    (2018). Ai2: Safety and robustness certification of neural networks with abstract inter-
    pretation. In 2018 IEEE symposium on security and privacy (SP), pages 3–18. IEEE.
    Gohar, U., Biswas, S., and Rajan, H. (2023). Towards understanding fairness and its
    composition in ensemble machine learning. In 2023 IEEE/ACM 45th International
    Conference on Software Engineering (ICSE), pages 1533–1545. IEEE.
    Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adver-
    sarial examples. arXiv preprint arXiv:1412.6572.
    Hort, M., Zhang, J. M., Sarro, F., and Harman, M. (2021). Fairea: A model behaviour
    mutation approach to benchmarking bias mitigation methods. In Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
    the Foundations of Software Engineering, pages 994–1006.
    John, P. G., Vijaykeerthy, D., and Saha, D. (2020). Verifying individual fairness in machine
    learning models. In Conference on Uncertainty in Artificial Intelligence, pages 749–
    758. PMLR.
    Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). Reluplex: An
    efficient smt solver for verifying deep neural networks. In Computer Aided Verification:
    29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
    Proceedings, Part I 30, pages 97–117. Springer.
    Katz, G., Huang, D. A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
    Wu, H., Zeljić, A., et al. (2019). The marabou framework for verification and analysis of
    deep neural networks. In Computer Aided Verification: 31st International Conference,
    CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31, pages
    443–452. Springer.
    Khedr, H. and Shoukry, Y. (2023). Certifair: A framework for certified global fairness
    of neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
    volume 37, pages 8237–8245.
    Kurakin, A., Goodfellow, I. J., and Bengio, S. (2018). Adversarial examples in the phys-
    ical world. In Artificial intelligence safety and security, pages 99–112. Chapman and
    Hall/CRC.
    Lam, L. and Suen, S. (1997). Application of majority voting to pattern recognition: an
    analysis of its behavior and performance. IEEE Transactions on Systems, Man, and
    Cybernetics-Part A: Systems and Humans, 27(5):553–568.
    Li, T., Xie, X., Wang, J., Guo, Q., Liu, A., Ma, L., and Liu, Y. (2023). Faire: Repair-
    ing fairness of neural networks via neuron condition synthesis. ACM Transactions on
    Software Engineering and Methodology, 33(1):1–24.
    Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Van
    Der Laak, J. A., Van Ginneken, B., and Sánchez, C. I. (2017). A survey on deep learning
    in medical image analysis. Medical image analysis, 42:60–88.
    Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C., Su, T., Li, L., Liu, Y.,
    et al. (2018). Deepgauge: Multi-granularity testing criteria for deep learning systems.
    In Proceedings of the 33rd ACM/IEEE international conference on automated software
    engineering, pages 120–131.
    Mohammadi, K., Sivaraman, A., and Farnadi, G. (2023). Feta: Fairness enforced verify-
    ing, training, and predicting algorithms for neural networks. In Proceedings of the 3rd
    ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization,
    pages 1–11.
    Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). Deepxplore: Automated whitebox testing
    of deep learning systems. In proceedings of the 26th Symposium on Operating Systems
    Principles, pages 1–18.
    Ruoss, A., Balunovic, M., Fischer, M., and Vechev, M. (2020). Learning certified in-
    dividually fair representations. Advances in neural information processing systems,
    33:7584–7596.
    Saleiro, P., Kuester, B., Hinkson, L., London, J., Stevens, A., Anisfeld, A., Rodolfa, K. T.,
    and Ghani, R. (2018). Aequitas: A bias and fairness audit toolkit. arXiv preprint
    arXiv:1811.05577.
    Sharma, A. and Wehrheim, H. (2020). Automatic fairness testing of machine learning
    models. In Testing Software and Systems: 32nd IFIP WG 6.1 International Conference,
    ICTSS 2020, Naples, Italy, December 9–11, 2020, Proceedings 32, pages 255–271.
    Springer.
    Singh, G., Gehr, T., Püschel, M., and Vechev, M. (2019). An abstract domain for certifying
    neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30.
    Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., and Kroening, D. (2018).
    Concolic testing for deep neural networks. In Proceedings of the 33rd ACM/IEEE In-
    ternational Conference on Automated Software Engineering, pages 109–119.
    Udeshi, S., Arora, P., and Chattopadhyay, S. (2018). Automated directed fairness test-
    ing. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
    Software Engineering, pages 98–108.
    Urban, C., Christakis, M., Wüstholz, V., and Zhang, F. (2020). Perfectly parallel fairness
    certification of neural networks. Proceedings of the ACM on Programming Languages,
    4(OOPSLA):1–30.
    Wang, S., Pei, K., Whitehouse, J., Yang, J., and Jana, S. (2018). Formal security analysis
    of neural networks using symbolic intervals. In 27th USENIX Security Symposium
    (USENIX Security 18), pages 1599–1614.
    Yurochkin, M., Bower, A., and Sun, Y. (2019). Training individually fair ml models with
    sensitive subspace robustness. arXiv preprint arXiv:1907.00020.
    Zhang, J. M. and Harman, M. (2021). “ignorance and prejudice” in software fairness.
    In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
    pages 1436–1447. IEEE.
    Zhang, L., Zhang, Y., and Zhang, M. (2021). Efficient white-box fairness testing through
    gradient search. In Proceedings of the 30th ACM SIGSOFT International Symposium
    on Software Testing and Analysis, pages 103–114.
    Zhang, P., Wang, J., Sun, J., Dong, G., Wang, X., Wang, X., Dong, J. S., and Dai, T.
    (2020). White-box fairness testing through adversarial sampling. In Proceedings of the
    ACM/IEEE 42nd International Conference on Software Engineering, pages 949–960.
    Zheng, H., Chen, Z., Du, T., Zhang, X., Cheng, Y., Ji, S., Wang, J., Yu, Y., and Chen,
    J. (2022). Neuronfair: Interpretable white-box fairness testing through biased neuron
    identification. In 44th International Conference on Software Engineering, pages 1–13,
    New York, NY, USA. ACM.
    Description: 碩士
    國立政治大學
    資訊管理學系
    111356047
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111356047
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    604701.pdf1597KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback