English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52052943      Online Users : 578
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/153162
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153162


    Title: 直播主的展示信號對直播銷售成績的影響
    The Impact of Streamers’ Presentation Signals on Live Sales Performance
    Authors: 林驊萱
    Lin, Hua-Xuan
    Contributors: 李怡慧
    Lee, Yi-Hui
    林驊萱
    Lin, Hua-Xuan
    Keywords: 直播商務
    直播主
    信號理論
    語言信號
    產品信號
    互動信號
    Live streaming commerce
    Live streamer
    Signaling theory
    Linguistic signal
    Product signal
    Social interaction signal
    Date: 2024
    Issue Date: 2024-09-04 14:06:08 (UTC+8)
    Abstract: 直播商務已發展為新型態的電子商務,透過影音資訊的傳遞,讓直播主即時推廣產品及服務,直播平台同時也提供了直播主與觀眾的線上互動空間,使產品與服務的資訊交換更為直接。現有研究已意識到直播主的角色對於銷售成績的重要影響,例如直播主的表達能力和產品展示技巧皆為提升銷售的關鍵。然而,即使直播主的產品演繹能力十分重要,直播作為以數位介面為主的銷售活動,資訊提供者(直播主)與資訊接收者(觀眾)之間,容易因數位傳播而產生訊息傳播完整性及的資訊不對等的問題。因此直播主的展示信號(銷售風格中的語言信號、直播環境下的互動信號與介紹產品時的產品信號),將是觀察獲得完整資訊的重要來源。然而,現有研究尚未充分探索直播主在展演商品時所隱藏的信號和線索是否影響觀眾的購買行為。本研究以信號理論探討非語言但卻富含大量溝通線索的信號對直播銷售成績的影響。研究結果顯示,除了語速與銷售額呈現負向關係,其他自變數(語調變化、產品品質、外型、尺寸大小、質地、材質、競爭資訊等)皆與銷售額呈正相關。此外,所有語言與產品信號在社會互動信號中的呼叫姓名次數調節影響之下,皆呈現正向結果;而顧客留言次數則是除了對產品信號中的材質有正向影響外,皆對其餘信號有負向調節作用,與我們的假設不符。
    Live commerce, a burgeoning e-commerce format, leverages real-time video and audio to facilitate product promotion and interaction between streamers and viewers. This study, grounded in signaling theory, examines how presentation signals (linguistic, product-related, and social interaction cues) transmitted by live streamers influence sales performance. Contrary to expectations, speaking speed negatively correlates with sales, while other variables (pitch variation, product quality, appearance, size, texture, material, competitive information) show positive correlations. Social interaction signals, particularly frequency of customer name mentions, enhance the positive relationship be-tween linguistic and product signals and sales. However, the moderating effect of the amount of customer comment is less consistent, primarily showing a negative association.
    Reference: Akerlof, G. A. (1970). 4. The market for ‘lemons’: quality uncertainty and the market mechanism. Market Failure or Success, 66.
    Ballantine, P. W. (2005). Effects of interactivity and product information on consumer satisfaction in an online retail setting. International Journal of Retail & Distribution Management, 33(6), 461-471.
    Bao, Z., & Zhu, Y. (2023). Understanding customers’ stickiness of live streaming commerce platforms: An empirical study based on modified e-commerce system success model. Asia Pacific Journal of Marketing and Logistics, 35(3), 775-793.
    Bhattacharya, S. (1979). An exploration of nondissipative dividend-signaling structures. Journal of Financial and Quantitative Analysis, 14(4), 667-668.
    Brunet, P. M., & Cowie, R. (2012). Towards a conceptual framework of research on social signal processing. Journal on Multimodal User Interfaces, 6, 101-115.
    Cai, J., Wohn, D. Y., Mittal, A., & Sureshbabu, D. (2018). Utilitarian and hedonic motivations for live streaming shopping. Paper presented at the Proceedings of the 2018 ACM international conference on interactive experiences for TV and online video.
    Chen, H., Chen, H., & Tian, X. (2022). The dual-process model of product information and habit in influencing consumers’ purchase intention: the role of live streaming features. Electronic Commerce Research and Applications, 53, 101150.
    Clement Addo, P., Fang, J., Asare, A. O., & Kulbo, N. B. (2021). Customer engagement and purchase intention in live-streaming digital marketing platforms: 实时流媒体数字营销平台中的客户参与和购买意向. The Service Industries Journal, 41(11-12), 767-786.
    Connelly, B. L., Certo, S. T., Ireland, R. D., & Reutzel, C. R. (2011). Signaling theory: A review and assessment. Journal of management, 37(1), 39-67.
    Dimoka, A., Hong, Y., & Pavlou, P. A. (2012). On product uncertainty in online markets: Theory and evidence. MIS quarterly, 395-426.
    Hou, F., Guan, Z., Li, B., & Hu, Y. (2020). Understanding purchase intention in e-commerce live streaming: roles of relational benefits, technological features and fan identity salience.
    Hu, M., Zhang, M., & Wang, Y. (2017). Why do audiences choose to keep watching on live video streaming platforms? An explanation of dual identification framework. Computers in Human Behavior, 75, 594-606.
    Kirmani, A., & Rao, A. R. (2000). No pain, no gain: A critical review of the literature on signaling unobservable product quality. Journal of marketing, 64(2), 66-79.
    Laosuraphon, N., & Nuangjamnong, C. (2022). Factors affecting customer satisfaction, trust, and repurchase intention towards online streaming shopping in Bangkok, Thailand A Case Study of Facebook Streaming Platform. AU-HIU International Multidisciplinary Journal, 2, 21-32.
    Liu, B., & Wang, W. (2023). Live commerce retailing with online influencers: Two business models. International Journal of Production Economics, 255, 108715.
    Lu, B., & Chen, Z. (2021). Live streaming commerce and consumers’ purchase intention: An uncertainty reduction perspective. Information & Management, 58(7), 103509.
    Lv, J., Cao, C., Xu, Q., Ni, L., Shao, X., & Shi, Y. (2022). How Live Streaming Interactions and Their Visual Stimuli Affect Users’ Sustained Engagement Behaviour—A Comparative Experiment Using Live and Virtual Live Streaming. Sustainability, 14(14), 8907.
    Ma, Y. (2021). To shop or not: Understanding Chinese consumers’ live-stream shopping intentions from the perspectives of uses and gratifications, perceived network size, perceptions of digital celebrities, and shopping orientations. Telematics and Informatics, 59, 101562.
    Merritt, K., & Zhao, S. (2022). The Power of Live Stream Commerce: A Case Study of How Live Stream Commerce Can Be Utilised in the Traditional British Retailing Sector. Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 71.
    Nicolaou, M., & Ringer, C. (2018). Streaming behaviour: Live streaming as a paradigm for multi-view analysis of emotional and social signals.
    Pentland, A. (2007). Social signal processing [exploratory DSP]. IEEE Signal Processing Magazine, 24(4), 108-111.
    Peterson, R. A., Cannito, M. P., & Brown, S. P. (1995). An exploratory investigation of voice characteristics and selling effectiveness. Journal of Personal Selling & Sales Management, 15(1), 1-15.
    Poggi, I., & Francesca, D. E. (2010). Cognitive modelling of human social signals. Paper presented at the Proceedings of the 2nd international workshop on Social signal processing.
    Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
    Roohi, S., Mekler, E. D., Tavast, M., Blomqvist, T., & Hämäläinen, P. (2019). Recognizing emotional expression in game streams. Paper presented at the Proceedings of the annual symposium on computer-human interaction in play.
    Ross, S. A. (1973). The economic theory of agency: The principal's problem. The American economic review, 63(2), 134-139.
    Rothschild, M., & Stiglitz, J. (1978). Equilibrium in competitive insurance markets: An essay on the economics of imperfect information Uncertainty in economics (pp. 257-280): Elsevier.
    Shang, Q., Ma, H., Wang, C., & Gao, L. (2023). Effects of Background Fitting of e-Commerce Live Streaming on Consumers’ Purchase Intentions: A Cognitive-Affective Perspective. Psychology Research and Behavior Management, 149-168.
    Shapiro, C. (1982). Consumer information, product quality, and seller reputation. The Bell Journal of Economics, 20-35.
    Spence, A. M. (1973). Time and communication in economic and social interaction. The Quarterly Journal of Economics, 87(4), 651-660.
    Spence, A. M. (1974). Market signaling: Informational transfer in hiring and related screening processes. (No Title).
    Spence, M. (1978). Job market signaling Uncertainty in economics (pp. 281-306): Elsevier.
    Spence, M. (2002). Signaling in retrospect and the informational structure of markets. American economic review, 92(3), 434-459.
    Stiglitz, J. E. (1975). The theory of" screening," education, and the distribution of income. The American economic review, 65(3), 283-300.
    Sun, Z., Fu, S., & Jiang, T. (2022). Gain-framed product descriptions are more appealing to elderly consumers in live streaming E-commerce: Implications from a controlled experiment. Data and Information Management, 6(4), 100022.
    Vinciarelli, A., Pantic, M., Bourlard, H., & Pentland, A. (2008). Social signal processing: state-of-the-art and future perspectives of an emerging domain. Paper presented at the Proceedings of the 16th ACM international conference on Multimedia.
    Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556.
    Wongkitrungrueng, A., Dehouche, N., & Assarut, N. (2020). Live streaming commerce from the sellers’ perspective: implications for online relationship marketing. Journal of Marketing Management, 36(5-6), 488-518.
    Xu, X., Wu, J.-H., Chang, Y.-T., & Li, Q. (2019). The investigation of hedonic consumption, impulsive consumption and social sharing in e-commerce live-streaming videos.
    Yao, T., & Mo, L. (2022). How to stand out in the “lemon market”? application of signaling theory in live streaming commerce. Paper presented at the SHS Web of Conferences.
    Yu, M., Chen, H., & Dou, Y. (2022). Just the Right Emotion: Exploring the Effects of Verbal and Facial Emotions in Live Streaming E-commerce. Available at SSRN 4141860.
    Zeng, Q., Guo, Q., Zhuang, W., Zhang, Y., & Fan, W. (2022). Do Real-Time Reviews Matter? Examining how Bullet Screen Influences Consumers’ Purchase Intention in Live Streaming Commerce. Information Systems Frontiers, 1-17.
    Zhang, X., Cheng, X., & Huang, X. (2023). “Oh, My God, Buy It!” Investigating impulse buying behavior in live streaming commerce. International Journal of Human–Computer Interaction, 39(12), 2436-2449.
    Zhou, Y., & Huang, W. (2023). The influence of network anchor traits on shopping intentions in a live streaming marketing context: The mediating role of value perception and the moderating role of consumer involvement. Economic Analysis and Policy, 78, 332-342.
    Description: 碩士
    國立政治大學
    資訊管理學系
    111356043
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111356043
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    604301.pdf1468KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback