English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50753945      Online Users : 705
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/153158
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153158


    Title: 於直播電商環境下結合時間因素基於圖卷積網絡的推薦系統
    Leveraging the Tripartite Relationships with Livestreaming E-Commerce Graphical Time-aware Recommender System
    Authors: 廖偉丞
    Liao, Wei-Cheng
    Contributors: 林怡伶
    蕭舜文

    Lin, Yi-Ling
    Hsiao, Shun-Weng

    廖偉丞
    Liao, Wei-Cheng
    Keywords: 直播電商
    圖神經網絡
    時間感知
    推薦系統
    Live Commerce
    GNN
    Time-aware
    Recommender System
    Date: 2024
    Issue Date: 2024-09-04 14:05:20 (UTC+8)
    Abstract: 直播電子商務 (live commerce) 的快速發展,對推薦系統 (RSs) 帶來了新的挑戰,需要建模用戶、商品和主播之間複雜的三方關係,並適當捕捉用戶偏好的變化。本研究提出了一種新的直播電子商務圖形時間感知推薦系統 (LGT-RS) 來應對這些挑戰。LGT-RS 利用圖卷積網絡 (GCNs) 來建模用戶、商品和主播之間的複雜關係,並結合了時間編碼方法來捕捉用戶偏好隨時間的動態演變。此外,為豐富數據並提升模型性能,LGT-RS 融合了一個針對商品、用戶和主播的統一詞嵌入空間。LGT-RS 的有效性通過在台灣直播電商平台真實世界數據集上的大量實驗得到了驗證。結果表明,LGT-RS 在 topK 推薦和鏈接預測任務上的性能優於其他幾個基準模型。本研究通過解決複雜三方關係、快速變化的用戶偏好以及數據集中有限的特徵等挑戰,推進了直播電商推薦系統的發展。
    The rapid growth of livestreaming e-commerce (live commerce) poses new challenges for recommender systems (RSs), necessitating the modeling of complex tripartite relationships among users, items, and streamers and capturing user preferences change properly. This study introduces a novel Live commerce Graphical Time-aware Recommender System (LGT-RS) to address these challenges. LGT-RS leverages Graph Convolutional Networks (GCNs) to model the complex relationships between users, items, and streamers, and incorporates a time encoding method to capture the dynamic evolution of user preferences over time. Furthermore, to enhance data richness and improve model performance, LGT-RS integrates a unified word embedding space for items, users, and streamers. The effectiveness of LGT-RS is validated through extensive experiments on a real-world dataset from a Taiwanese live commerce platform. The results demonstrate LGT-RS's superior performance compared to several baseline models in topK recommendation and link prediction tasks.
    Reference: Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2021). Bundle recommendation and generation with graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2326–2340.
    Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019). Graph neural networks for social recommendation. The world wide web conference, 417–426.
    Favale, T., Soro, F., Trevisan, M., Drago, I., & Mellia, M. (2020). Campus traffic and e-learning during covid-19 pandemic. Computer networks, 176, 107290.
    Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
    He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. Proceedings of the 26th international conference on world wide web, 173–182.
    Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
    Kotnis, B., & Nastase, V. (2017). Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816.
    Liben-Nowell, D., & Kleinberg, J. (2003). The link prediction problem for social networks.
    Proceedings of the twelfth international conference on Information and knowledge management, 556–559.
    Lin, C.-Y., & Chen, H.-S. (2019). Personalized channel recommendation on live streaming platforms. Multimedia Tools and Applications, 78, 1999–2015.
    Liu, F., Cheng, Z., Zhu, L., Gao, Z., & Nie, L. (2021). Interest-aware message-passing gcn for recommendation. Proceedings of the Web Conference 2021, 1296–1305.
    Liu, Y.-W., Lin, C.-Y., & Huang, J.-L. (2015). Live streaming channel recommendation using hits algorithm. 2015 IEEE International Conference on Consumer Electronics- Taiwan, 118–119.
    Lu, Z., Annett, M., & Wigdor, D. (2019). Vicariously experiencing it all without going outside: A study of outdoor livestreaming in china. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–28.
    Lu, Z., Xia, H., Heo, S., & Wigdor, D. (2018). You watch, you give, and you engage: A study of live streaming practices in china. Proceedings of the 2018 CHI conference on human factors in computing systems, 1–13.
    Mao, K., Xiao, X., Zhu, J., Lu, B., Tang, R., & He, X. (2020). Item tagging for information retrieval: A tripartite graph neural network based approach. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2327–2336.
    McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. Menon, A. K., & Elkan, C. (2011). Link prediction via matrix factorization. Machine
    Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II 22, 437– 452.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
    Nascimento, G., Ribeiro, M., Cerf, L., Cesário, N., Kaytoue, M., Raıssi, C., Vasconcelos, T., & Meira, W. (2014). Modeling and analyzing the video game live-streaming community. 2014 9th Latin American Web Congress, 1–9.
    Nitu, P., Coelho, J., & Madiraju, P. (2021). Improvising personalized travel recommendation system with recency effects. Big Data Mining and Analytics, 4(3), 139–154.
    Rappaz, J., McAuley, J., & Aberer, K. (2021). Recommendation on live-streaming platforms: Dynamic availability and repeat consumption. Proceedings of the 15th ACM Conference on Recommender Systems, 390–399.

    Salamat, A., Luo, X., & Jafari, A. (2021). Heterographrec: A heterogeneous graph-based neural networks for social recommendations. Knowledge-Based Systems, 217, 106817.
    Sun, Z., Li, X., Sun, X., Meng, Y., Ao, X., He, Q., Wu, F., & Li, J. (2021). Chinesebert: Chinese pretraining enhanced by glyph and pinyin information. arXiv preprint arXiv:2106.16038.
    Tian, Z., Liu, Y., Sun, J., Jiang, Y., & Zhu, M. (2021). Exploiting group information for personalized recommendation with graph neural networks. ACM Transactions on Information Systems (TOIS), 40(2), 1–23.

    Wang, M. Y. (2019). Deep graph library: Towards efficient and scalable deep learning on graphs. ICLR workshop on representation learning on graphs and manifolds.
    Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation learning on temporal graphs. arXiv preprint arXiv:2002.07962.

    Yang, T.-W., Shih, W.-Y., Huang, J.-L., Ting, W.-C., & Liu, P.-C. (2013). A hybrid preference-aware recommendation algorithm for live streaming channels. 2013 Conference on Technologies and Applications of Artificial Intelligence, 188–193.

    Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 974–983.

    Yu, S., Jiang, Z., Chen, D.-D., Feng, S., Li, D., Liu, Q., & Yi, J. (2021). Leveraging tripartite interaction information from live stream e-commerce for improving product recommendation. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 3886–3894.
    Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural network. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 793–803.
    Zhang, M., Wu, S., Yu, X., Liu, Q., & Wang, L. (2022). Dynamic graph neural networks for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4741–4753.
    Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. Advances in neural information processing systems, 31.
    Zheng, S., Chen, J., Liao, J., & Hu, H.-L. (2023). What motivates users’ viewing and purchasing behavior motivations in live streaming: A stream-streamer-viewer perspective. Journal of Retailing and Consumer Services, 72, 103240.
    Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., & Gao, J. (2018). Atrank: An attention-based user behavior modeling framework for recommendation. Proceedings of the AAAI conference on artificial intelligence, 32(1).
    Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI open, 1, 57–81.
    Description: 碩士
    國立政治大學
    資訊管理學系
    111356033
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111356033
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603301.pdf3594KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback