Reference: | Chang, J., Gao, C., He, X., Jin, D., & Li, Y. (2021). Bundle recommendation and generation with graph neural networks. IEEE Transactions on Knowledge and Data Engineering, 35(3), 2326–2340. Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019). Graph neural networks for social recommendation. The world wide web conference, 417–426. Favale, T., Soro, F., Trevisan, M., Drago, I., & Mellia, M. (2020). Campus traffic and e-learning during covid-19 pandemic. Computer networks, 176, 107290. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. Proceedings of the 26th international conference on world wide web, 173–182. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Kotnis, B., & Nastase, V. (2017). Analysis of the impact of negative sampling on link prediction in knowledge graphs. arXiv preprint arXiv:1708.06816. Liben-Nowell, D., & Kleinberg, J. (2003). The link prediction problem for social networks. Proceedings of the twelfth international conference on Information and knowledge management, 556–559. Lin, C.-Y., & Chen, H.-S. (2019). Personalized channel recommendation on live streaming platforms. Multimedia Tools and Applications, 78, 1999–2015. Liu, F., Cheng, Z., Zhu, L., Gao, Z., & Nie, L. (2021). Interest-aware message-passing gcn for recommendation. Proceedings of the Web Conference 2021, 1296–1305. Liu, Y.-W., Lin, C.-Y., & Huang, J.-L. (2015). Live streaming channel recommendation using hits algorithm. 2015 IEEE International Conference on Consumer Electronics- Taiwan, 118–119. Lu, Z., Annett, M., & Wigdor, D. (2019). Vicariously experiencing it all without going outside: A study of outdoor livestreaming in china. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–28. Lu, Z., Xia, H., Heo, S., & Wigdor, D. (2018). You watch, you give, and you engage: A study of live streaming practices in china. Proceedings of the 2018 CHI conference on human factors in computing systems, 1–13. Mao, K., Xiao, X., Zhu, J., Lu, B., Tang, R., & He, X. (2020). Item tagging for information retrieval: A tripartite graph neural network based approach. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2327–2336. McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426. Menon, A. K., & Elkan, C. (2011). Link prediction via matrix factorization. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II 22, 437– 452. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26. Nascimento, G., Ribeiro, M., Cerf, L., Cesário, N., Kaytoue, M., Raıssi, C., Vasconcelos, T., & Meira, W. (2014). Modeling and analyzing the video game live-streaming community. 2014 9th Latin American Web Congress, 1–9. Nitu, P., Coelho, J., & Madiraju, P. (2021). Improvising personalized travel recommendation system with recency effects. Big Data Mining and Analytics, 4(3), 139–154. Rappaz, J., McAuley, J., & Aberer, K. (2021). Recommendation on live-streaming platforms: Dynamic availability and repeat consumption. Proceedings of the 15th ACM Conference on Recommender Systems, 390–399.
Salamat, A., Luo, X., & Jafari, A. (2021). Heterographrec: A heterogeneous graph-based neural networks for social recommendations. Knowledge-Based Systems, 217, 106817. Sun, Z., Li, X., Sun, X., Meng, Y., Ao, X., He, Q., Wu, F., & Li, J. (2021). Chinesebert: Chinese pretraining enhanced by glyph and pinyin information. arXiv preprint arXiv:2106.16038. Tian, Z., Liu, Y., Sun, J., Jiang, Y., & Zhu, M. (2021). Exploiting group information for personalized recommendation with graph neural networks. ACM Transactions on Information Systems (TOIS), 40(2), 1–23.
Wang, M. Y. (2019). Deep graph library: Towards efficient and scalable deep learning on graphs. ICLR workshop on representation learning on graphs and manifolds. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation learning on temporal graphs. arXiv preprint arXiv:2002.07962.
Yang, T.-W., Shih, W.-Y., Huang, J.-L., Ting, W.-C., & Liu, P.-C. (2013). A hybrid preference-aware recommendation algorithm for live streaming channels. 2013 Conference on Technologies and Applications of Artificial Intelligence, 188–193.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 974–983.
Yu, S., Jiang, Z., Chen, D.-D., Feng, S., Li, D., Liu, Q., & Yi, J. (2021). Leveraging tripartite interaction information from live stream e-commerce for improving product recommendation. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 3886–3894. Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural network. Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 793–803. Zhang, M., Wu, S., Yu, X., Liu, Q., & Wang, L. (2022). Dynamic graph neural networks for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4741–4753. Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. Advances in neural information processing systems, 31. Zheng, S., Chen, J., Liao, J., & Hu, H.-L. (2023). What motivates users’ viewing and purchasing behavior motivations in live streaming: A stream-streamer-viewer perspective. Journal of Retailing and Consumer Services, 72, 103240. Zhou, C., Bai, J., Song, J., Liu, X., Zhao, Z., Chen, X., & Gao, J. (2018). Atrank: An attention-based user behavior modeling framework for recommendation. Proceedings of the AAAI conference on artificial intelligence, 32(1). Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020). Graph neural networks: A review of methods and applications. AI open, 1, 57–81. |