政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/153155
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 50954110      在线人数 : 945
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/153155


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/153155


    题名: 結合人格特質與動態信任之團體推薦系統
    Influence based Group Recommendation System in Personality and Dynamic Trust
    作者: 黃誠恩
    Huang, Cheng-En
    贡献者: 林怡伶
    Lin, Yi-Ling
    黃誠恩
    Huang, Cheng-En
    关键词: 團體推薦
    信任
    人格特質
    團體決策
    Group Recommendation
    Trust
    Personality traits
    Group decision-making
    日期: 2024
    上传时间: 2024-09-04 14:04:43 (UTC+8)
    摘要: 在日常生活中,團體活動頻繁進行,向用戶推薦內容成為一項重要任務。在異質團體中,成員偏好不一致可能導致衝突的產生。動態團體的挑戰在於調和其成員多樣化偏好,以達成所有成員滿意的團體決策。然而人格特質和關係等社會因子在促進團體決策中有關鍵作用,本研究採用了TKI性格特徵,這在緩解決策過程中的衝突表現良好。此外,我們開發了一種創新的動態信任機制,能夠更精準的捕捉團體內彼此變動的信任值,並將其整合到我們改良的團體推薦演算法中。為了達成研究目標,我們進行了一項為期兩週的實證研究,我們部署了一個響應式網頁。實驗中用戶會針對每個群組的兩個推薦清單進行評分,包含傳統聚合型和矩陣式演算法。通過本實驗,我們能夠更好地捕捉團體決策中社會因子的變動性,以達到更高的準確度和滿意度,並為團體餐廳推薦領域奠定里程碑。
    Given the frequent engagement in group activities within daily life, recommending content to a group of users becomes an important task. In heterogeneous groups, a conflict situation may arise more easily if the preferences of group members are incompatible. The challenge with dynamic groups lies in reconciling the diverse preferences of its members to reach a collective decision that satisfies everyone. While social dynamics such as personality traits, and mutual influence play a pivotal role in shaping group decision-making, this study employs the TKI personality traits, which have demonstrated efficacy in mitigating conflicts during group decision processes. Besides, we have developed a novel dynamic trust mechanism that adeptly captures the evolving trust values within a group integrated into our refined group recommendation algorithms. In order to achieve our research objectives, we executed a two-week empirical study by deploying a responsive web application tailored for our group recommendation system. Users in the experiment interacted with two distinct algorithms: traditional influence-based aggregation and the influence matrix algorithm at random. Through the experiment, we are able to better capture the variability of social factors in group decision-making, achieving higher accuracy and satisfaction as well as laying the foundation for a milestone in group recommendation within the restaurant domain.
    參考文獻: Abolghasemi, R., Engelstad, P., Herrera-Viedma, E., & Yazidi, A. (2022). A personality-aware group recommendation system based on pairwise preferences. Information Sciences, 595, 1–17.
    Aluja, A., Garca, O., Rossier, J., & Garca, L. F. (2005). Comparison of the NEO-FFI, the NEO-FFI-R and an alternative short version of the NEO-PI-R (NEO-60) in Swiss and Spanish samples. Personality and Individual Differences, 38(3), 591–604.
    Barile, F., Cervone, F., Rossi, S., & others. (2015). Evaluating User’s Personality and Social Interactions for Groups Recommendations. DMRS, 17–20.
    Boratto, L., & Carta, S. (2011). State-of-the-art in group recommendation and new approaches for automatic identification of groups. In Information retrieval in distributed environments (pp. 1–20). Springer.
    Capuano, N., Chiclana, F., Herrera-Viedma, E., Fujita, H., & Loia, V. (2019). Fuzzy group decision making for influence-aware recommendations. Computers in Human Behavior, 101, 371–379.
    Cheng, Z., & Shen, J. (2016). On effective location-aware music recommendation. ACM Transactions on Information Systems (TOIS), 34(2), 1–32.
    Cho, J.-H., Chan, K., & Adali, S. (2015). A survey on trust modeling. ACM Comput. Surv., 48(2), 1–40.
    Choi, S. H., Kang, S., & Jeon, Y. J. (2006). Personalized recommendation system based on product specification values. Expert Systems with Applications, 31(3), 607–616.
    Chu, J., Liu, X., & Wang, Y. (2016). Social network analysis based approach to group decision making problem with fuzzy preference relations. JIFS., 31(3), 1271–1285.
    Costa, P. T., & McCrae, R. R. (2008). The revised neo personality inventory (neo-pi-r). The SAGE Handbook of Personality Theory and Assessment, 2(2), 179–198.
    Dara, S., Chowdary, C. R., & Kumar, C. (2020). A survey on group recommender systems. Journal of Intelligent Information Systems, 54(2), 271–295.
    DeGroot, M. H. (1974). Reaching a consensus. J. Am. Stat. Assoc., 69(345), 118–121.
    Dunn, G., Wiersema, J., Ham, J., & Aroyo, L. (2009). Evaluating interface variants on personality acquisition for recommender systems. UMAP 2009, 259–270.
    Ebert, T. A. E. (2009). Facets of trust in relationships–a literature synthesis of highly ranked trust articles. Journal of Business Market Management, 3, 65–84.
    Evans, M. M., Frissen, I., & Choo, C. W. (2019). The Strength of Trust Over Ties: Investigating the Relationships between Trustworthiness and Tie-Strength in Effective Knowledge Sharing. Electron. J. Knowl. Manag., 17(1), pp19–33.
    Gartrell, M., Xing, X., Lv, Q., Beach, A., Han, R., Mishra, S., & Seada, K. (2010). Enhancing group recommendation by incorporating social relationship interactions. GROUP ’10, 97–106.
    Gilbert, E., & Karahalios, K. (2009). Predicting tie strength with social media. CHI ’09, 211–220.
    Golbeck, J. (2006). Combining provenance with trust in social networks for semantic web content filtering. IPAW 2006, 101–108.
    Goldberg, L. R. (1993). The structure of phenotypic personality traits. Am. Psychol., 48(1), 26.
    Gorla, J., Lathia, N., Robertson, S., & Wang, J. (2013). Probabilistic group recommendation via information matching. WWW ’13, 495–504.
    Gosling, S. D., Rentfrow, P. J., & Swann Jr, W. B. (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37(6), 504–528.
    Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.
    Guo, J., Zhu, Y., Li, A., Wang, Q., & Han, W. (2016). A social influence approach for group user modeling in group recommendation systems. IEEE Intelligent Systems, 31(5), 40–48.
    Hansen, M. T. (1999). The search-transfer problem: The role of weak ties in sharing knowledge across organization subunits. Administrative Science Quarterly, 44(1), 82–111.
    Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review of soft consensus models in a fuzzy environment. Information Fusion, 17, 4–13.
    Jameson, A., & Smyth, B. (2007). Recommendation to groups. In The adaptive web: methods and strategies of web personalization (pp. 596–627). Springer.
    Jiang, W., Wang, G., Bhuiyan, M. Z. A., & Wu, J. (2016a). Understanding graph-based trust evaluation in online social networks: Methodologies and challenges. Acm Computing Surveys (Csur), 49(1), 1–35.
    Juan A. Recio-Garcia, Guillermo Jimenez-DiazAntonio A. Sanchez-Ruiz, Belen Diaz-Agudo, ACM Digital Library., & Association for Computing Machinery. (2009). Personality aware recommendation to groups. RecSys ’09, 325–328.
    Kim, J. K., Kim, H. K., Oh, H. Y., & Ryu, Y. U. (2010). A group recommendation system for online communities. International Journal of Information Management, 30(3), 212–219.
    Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., & Newell, C. (2012). Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction, 22, 441–504.
    Kompan, M., & Bieliková, M. (2014). Social Structure and Personality Enhanced Group Recommendation. UMAP Workshops, 1–7.
    Levin, D. Z., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 50(11), 1477–1490.
    Li, Y.-M., & Lai, C.-Y. (2014). A social appraisal mechanism for online purchase decision support in the micro-blogosphere. Decision Support Systems, 59, 190–205.
    Liberatore, F., & Quijano-Sanchez, L. (2017). What do we really need to compute the Tie Strength? An empirical study applied to Social Networks. Comput. Commun., 110, 59–74.
    Ma, Z. (2011). Exploring the Relationships between the Big Five Personality Factors, Conflict Styles, and Bargaining Behaviors. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.735063
    Marsden, P. V, & Campbell, K. E. (1984). Measuring tie strength. Social Forces, 63(2), 482–501.
    Marsh, S. P. (1994). Formalising trust as a computational concept.
    Massa, P., & Avesani, P. (2007). Trust metrics on controversial users: Balancing between tyranny of the majority. International Journal on Semantic Web and Information Systems (IJSWIS), 3(1), 39–64.
    Masthoff, J., & Gatt, A. (2006). In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems. User Modeling and User-Adapted Interaction, 16, 281–319.
    Pu, P., Chen, L., & Hu, R. (2011). A user-centric evaluation framework for recommender systems. Proceedings of the Fifth ACM Conference on Recommender Systems, 157–164.
    Quesada, F. J., Palomares, I., & Martinez, L. (2015). Managing experts behavior in large-scale consensus reaching processes with uninorm aggregation operators. Applied Soft Computing, 35, 873–887.
    Quijano-Sanchez, L., Recio-Garcia, J. A., & Diaz-Agudo, B. (2010). Personality and social trust in group recommendations. 2010 22Nd IEEE International Conference on Tools with Artificial Intelligence, 2, 121–126.
    Quijano-Sanchez, L., Recio-Garcia, J. A., Diaz-Agudo, B., & Jimenez-Diaz, G. (2013). Social factors in group recommender systems. ACM Transactions on Intelligent Systems and Technology (TIST), 4(1), 1–30.
    Rammstedt, B., & John, O. P. (2007). Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. Journal of Research in Personality, 41(1), 203–212.
    Recio-Garcia, J. A., Quijano, L., & Diaz-Agudo, B. (2013). Including social factors in an argumentative model for group decision support systems. Decision Support Systems, 56, 48–55.
    Sun, L., Wang, X., Wang, Z., Zhao, H., & Zhu, W. (2016). Social-aware video recommendation for online social groups. IEEE Transactions on Multimedia, 19(3), 609–618.
    Thomas, K. W. (2008). Thomas-kilmann conflict mode. TKI Profile and Interpretive Report, 1(11).
    Tran, T. N. T., Felfernig, A., & Tintarev, N. (2021). Humanized recommender systems: State-of-the-art and research issues. ACM TiiS., 11(2), 1–41.
    Turner, A. (2015). Generation Z: Technology and social interest. The Journal of Individual Psychology, 71(2), 103–113.
    Tyler, T. R., & Lind, E. A. (1992). A relational model of authority in groups. In Advances in experimental social psychology (Vol. 25, pp. 115–191). Elsevier.
    描述: 碩士
    國立政治大學
    資訊管理學系
    111356030
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111356030
    数据类型: thesis
    显示于类别:[資訊管理學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    603001.pdf6898KbAdobe PDF0检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈