English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50739580      Online Users : 558
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/153144
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/153144


    Title: 半結構化深度迴歸於效果估計和理論測試
    A Semi-Structured Deep Regression for Effect Estimation and Theory Testing
    Authors: 徐宇文
    Hsu, Yu-Wen
    Contributors: 莊皓鈞
    周彥君

    Chuang, Hao-Chun
    Chou, Yen-Chun

    徐宇文
    Hsu, Yu-Wen
    Keywords: 半結構化深度迴歸
    效果估計
    理論測試
    Semi-Structured Deep Regression
    Effect Estimation
    Theory Testing
    Date: 2024
    Issue Date: 2024-09-04 14:02:30 (UTC+8)
    Abstract: 深度學習在各個領域展現出優異的效能,但其模型往往過於複雜且缺乏可解
    釋性,本研究旨在了解結合了深度學習的彈性與線性迴歸的可解釋性的半結構化深度迴歸模型,以協助在實證研究中取得更準確、穩健的推論。
    本研究透過模擬實驗,探討了半結構化深度迴歸模型在不同資料結構和模型
    配置下的效果估計和理論測試表現,研究結果顯示,相較於傳統線性迴歸模型,結合線性迴歸、深度學習與正交化技巧的半結構化深度迴歸模型在估計線性關係上更具優勢,不管是在處理複雜的交互作用關係、內生性或殘差異質性問題上皆有改善,應用在多層次資料上亦有良好的估計表現。然而,也發現了模型在處理單一變數線性和非線性加總後的關係時,仍可能出現係數估計偏誤。本研究為半結構化深度迴歸模型在實證研究的應用上提供了實際的估計與測試案例,有助於學者了解其優缺點並判斷合適的使用情境。
    Deep learning has demonstrated remarkable performance in various domains, but its models are often overly complex and lack interpretability. This study aims to understand
    semi-structured deep regression models, which combine the flexibility of deep learning with the interpretability of linear regression, to assist in achieving more accurate and
    robust inference in empirical research.
    Through simulation experiments, this study investigates the performance of semistructured deep regression models in effect estimation and theory testing under different data structures and model configurations. The results show that compared to traditional linear regression models, semi-structured deep regression models that integrate linear regression, deep learning, and orthogonalization techniques have advantages in estimating linear relationships, particularly when dealing with complex interaction effects, endogeneity, and heteroscedasticity. The model also performs well when applied to multilevel data. However, it is also found that the model may still exhibit coefficient estimation bias when dealing with relationships involving the summation of linear and non-linear terms for a single variable. This study provides practical estimation and testing cases for applying semi-structured deep regression models in empirical research, helping scholars understand their strengths and weaknesses and determine appropriate usage scenarios.
    Reference: Antonakis, J., Bastardoz, N., & Rönkkö, M. (2021). On ignoring the random effects assumption in multilevel models: Review, critique, and recommendations. Organizational Research Methods, 24(2), 443–483.
    Chou, Y.-C., Chuang, H. H.-C., Chou, P., & Oliva, R. (2023). Supervised machine learning for theory building and testing: Opportunities in operations management. Journal of Operations Management, 69(4), 643–675.
    Choudhury, P., Allen, R. T., & Endres, M. G. (2021). Machine learning for pattern discovery in management research. Strategic Management Journal, 42(1), 30–57.
    Dorie, V., Perrett, G., Hill, J. L., & Goodrich, B. (2022). Stan and bart for causal inference: Estimating heterogeneous treatment effects using the power of stan and the flexibility of machine learning. Entropy, 24(12), 1782.
    Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychological methods, 12(2), 121.
    Mundlak, Y. (1978). On the pooling of time series and cross section data. Econometrica: journal of the Econometric Society, 69–85.
    Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature machine intelligence, 1(5), 206–215.
    Rügamer, D., Kolb, C., & Klein, N. (2024). Semi-structured distributional regression. The American Statistician, 78(1), 88–99.
    Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.
    Shrestha, Y. R., He, V. F., Puranam, P., & von Krogh, G. (2021). Algorithm supported induction for building theory: How can we use prediction models to theorize? Organization Science, 32(3), 856–880.
    Sun, L., Lyu, G., Yu, Y., & Teo, C.-P. (2020). Fulfillment by amazon versus fulfillment by seller: An interpretable risk-adjusted fulfillment model. Naval Research Logistics (NRL), 67(8), 627–645.
    Description: 碩士
    國立政治大學
    資訊管理學系
    111356003
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111356003
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    600301.pdf2153KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback