政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/153127
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113648/144635 (79%)
造访人次 : 51585319      在线人数 : 879
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/153127


    题名: 價格管制、產業環境與創新擴散對廠商競爭動態的影響-以臺灣電信業為例
    The impact of price cap, industrial environment, and innovation diffusion on firm's competition dynamics:The case study of Taiwan's telecommunications industry
    作者: 李淑華
    贡献者: 吳豐祥
    許牧彥

    李淑華
    关键词: Bass模型
    價格管制
    創新擴散
    競爭與合作
    Lotka-Volterra 模型
    Bass-Lotka-Volterra模型
    競爭動態
    Bass model,
    price regulation
    innovation diffusion
    competition and cooperation
    Lotka-Volterra model
    Bass-Lotra Model
    competition dynamics
    日期: 2024
    上传时间: 2024-09-04 13:59:03 (UTC+8)
    摘要: 本研究主要探討價格管制、電信產業環境與創新擴散對於廠商競爭動態的影響,並比較Bass-Lotka-Volterra模型(簡稱BLV)與Lotka-Volterra模型 (簡稱LV)在評估和預測廠商競爭動態方面的效果。以往研究僅透過銷售額(價格與數量)來探討競爭與合作之間的關係,未同時考量價格影響、創新擴散及技術世代交替的效果。因此,本研究將價格分開處理,並假設市場規模是不因價格而變動的常數,這與臺灣電信產業市場的實況相符。然後,本研究以電信產業為例,援引創新擴散理論中的Bass模型來修正LV模型(純數量的競爭合作模型),並將技術世代的更新視為改變電信廠商競爭與合作格局的機會點,將創新擴散及世代交替的影響分離出來,進一步探討廠商競爭與合作的動態。過往研究中,Smítalová & Šujan(1991)以Lotka-Volterra模型中的交互影響係數來判斷競合關係,卻未能考慮模型係數求解過程中,係數值應該基於實際市場狀況而受到限制。本研究基於此動機對模型係數之可求解之數值範圍進行控制,使得研究結果在實證中更具意義和解釋力。這一調整使模型不僅能夠更準確地描述產業競爭中的競合關係,還可以更全面地反映各競爭者之間的複雜互動。
    研究顯示價格變動對電信業者市佔率影響的有限性,以4G資費的降價行為為例,即使電信業者推出促銷方案,市場市佔率依然保持穩定,顯示出用戶在簽訂長期契約後,價格因素對其決策的影響較小。這一現象表明,價格在短期內對用戶數量的變化影響不大,在市場規模維持穩定情況下,BLV模型能夠更準確地預測市場競爭動態。本研究進一步將創新擴散理論與技術世代的更新納入考量,提出修正的BLV模型來提升預測準確性。臺灣電信產業市場在規模穩定的前提下,又兼具2G、3G、4G和5G之間技術世代交替過程中的市佔變化,是以援引4G為範例來研究2G、3G轉入至4G以及4G轉出至5G對4G市佔之影響。結果顯示,在考慮技術世代交替的情況後,修正的BLV模型在4G成長期的預測績效優於傳統LV模型。此外,當進一步對修正的BLV模型係數之可求解範圍進行控制時,不但整體模型更具理論解釋力,其預測績效亦較傳統LV模型更為理想。本研究的貢獻即在於提供Lotka-Volterra模型與Logistic創新擴散模型之間的理論連結,並將其應用於多家廠商間的競爭樣態分析。尤其是首次將技術世代轉換率納入考量,推導出更廣泛適用的BLV模型。
    本研究整合創新擴散與世代交替的競合動態模型可以更準確地衡量廠商的競爭與合作關係。這個研究成果對於企業管理者在擬定競合策略時或政府主管機構在管制產業的競爭合作動態上都有極高的應用價值。例如:國家通訊委員會對市場主導者的價格管制、公平交易委員會對廠商聯合壟斷行為的裁量,都可用本研究所揭示的方法來衡量廠商的競爭與合作關係。
    This study explores the impact of price regulation, the telecom industry environment, and innovation diffusion on the competitive dynamics of firms. It also compares the effectiveness of the Bass-Lotka-Volterra (BLV) model and the Lotka-Volterra (LV) model in evaluating and predicting these dynamics. The research finds that studies in the past have only examined the relationship between competition and cooperation through sales volume (price and quantity), without considering the effects of price, innovation diffusion, and generation alternation of technology. Therefore, this study isolates the price effect and assumes that market size is a constant unaffected by price, which aligns with Taiwan's telecom industry market status. Using Taiwan telecom indurstry as a case study, this study then applies the Bass model from innovation diffusion theory to refine the LV model (a competition-cooperation model purely based on quantity). It treats technological generation shift as opportunities that alter the competitive and cooperative dynamics among telecom firms, separating the effects of innovation diffusion and generational transitions. Furthermore, previous research by Smítalová & Šujan (1991) was limited in using only the interaction coefficient in the Lotka-Volterra model to assess competitive relationships, but fails to consider that the numerical values of the model coefficients shall be constrained by market status. This study controls the numerical value space of model coefficients, making the numerical results of the model coefficients to be meaningful and interpretable in acutual applications. This adjustment allows the model not only to more accurately describe the competitive relationships within the industry but also to more comprehensively reflect the complex interactions among competitors.
    The study reveals the impact of price fluctuations on the market share of telecom operators is limited. Using 4G tariff reductions as an example, it shows that irrespective of promotional offers from telecom operators, the market share remained stable. This indicates that once suscribing long-term contracts, price becomes a less significant factor in users’ decision-making. This phenomenon suggests that price changes have limited effect on the total number of subscribption in the short term. Thus, when the market size remains stable, the BLV model serves as a more accurate tool for predicting market competition dynamics. The study further incorporates innovation diffusion theory and technological generational shifts into the analysis, proposing a modified BLV model, to enhance predictive accuracy. Since the market size of Taiwan telecom industry is stable and provides market share transitional status during technological generation shift between 2G, 3G, 4G, and 5G, 4G market share is used as a case study for studying the impact on 4G market share when transitioning from 2G and 3G, and transitioning to 5G. The results indicate that, under consideration of technological generation shift, the modified BLV model outperforms the traditional LV model in predicting market dynamics during the 4G growth period. When further constraining the numerical value space of the model coefficients of the modificed BLV model, it not only demonstrates superior predictive performance but also provides better theoretically interpretable parameters than the LV model and traditional BLV model. The academic contribution of this study thus lies in providing the theoretical connection between the Lotka-Volterra model and the Logistic innovation diffusion model, applying it to the analysis of competitive patterns among multiple firms. Notably, this research is the first to incorporate technological generation transition rates, resulting in the derivation of the more broadly applicable BLVc model.

    As a result, the proposed model in this study, which integrates innovation diffusion and technology generational shifts, can more accurately assess the competitive and cooperative relationships among firms. These findings provide high practical value for corporate managers in formulating competitive and cooperative strategies and for government regulatory bodies in managing industry competition and cooperation dynamics. For example, the National Communications Commission (NCC)'s price regulation for market leaders and the Fair-Trade Commission's decisions on joint monopolistic behavior by firms can use the methods revealed in this study to measure the competitive and cooperative relationships among firms.
    參考文獻: 中文
    1. 王明妤、張美清 (2002)。以加入價格之擴散模型探討國人出國旅遊之擴散。2002年管理創新與新願景研討會,新北市,臺灣。
    2. 交通部電信總局 (2002)。我國電信競爭力分析。委託研究報告。
    3. 施曉娟、王盈勛、郭良文 (2004)。行動通訊服務產業市場結構與廠商行為之研究。碩士論文,國立交通大學。
    4. 國家通訊傳播委員會 (2023)。特定電信服務市場之市場顯著地位者特別管制措施。NCC NEWS,17(3)。
    5. 許牧彥、高偉哲、邱郁雯、 李淑華 (2024)。邁向創新擴散與產業動態之一般性預測模型—以Bass-Lotka-Volterra模型分析Intel及AMD之競合。科技管理學刊,29(1),65-102。
    6. 蘇俊吉 (2015)。行動通信的演進歷程。科學發展,513(58-63)。

    英文
    7. Anisiu, M.C. (2014). Lotka, Volterra and their model, Didáctica mathematica, 32, 9-17.
    8. Asianometry (2022).How AMD left GlobalFoundries for TSMC, From:https://meet-global.bnext.com.tw/articles/view/47591
    9. Avila, L. A. P., Lee, D. J.,& Kim, T. (2018). Diffusion and competitive relationship of mobile telephone service in Guatemala: An empirical analysis, Telecommunications Policy, 42(2), 116-126.
    10. Bass, F. M. (1969). A new product growth for model consumer durables, Management Science, 15(5), 215-227.
    11. Bass, F. M. (1969). New product growth model for consumer durables. Management Science, 15(5), 215-322.
    12. Bass, F. M. (1980). The relationship between diffusion rates, experience curve, and Demand Elasticities for Customer Durable Technological Innovations”, The Journal of Business, 53(July), 51-67.
    13. Bass, F. M., & Bultez, A. V. (1982). A note on optimal strategic pricing of technological innovations. Marketing Science, 1(Fall), 371-378.
    14. Bass, F. M., Krishnan, T. V., & Jain, D. C. (1994). Why the Bass model fits without decision variables. Marketing Science, 13(3), 203-223.
    15. Bolton, P., Brodley, J. F., & Riordan, M. H. (1999). Predatory pricing: Strategic theory and legal policy. Georgetown Law Journal, 88, 2239-2264.
    16. Bradley, I., & Price, C. (1988). The economic regulation of private industries by price constraints. The Journal of Industrial Economics, 37(1), 99-106.
    17. Brandenburger, A., & Stuart, H. (2007). Biform games. Management Science, 53(4), 537-549.
    18. Burström, T., Kock, S., & Wincent, J. (2022). Coopetition–Strategy and interorganizational transformation: Platform, innovation barriers, and coopetitive dynamics. Industrial Marketing Management, 104, 101-115.
    19. Carroll, G. R. (1981). Dynamics of organizational expansion in national systems of education. American Sociological Review, 585-599.
    20. Cha, K. C., Jun, D. B., Wilson, A. R., & Park, Y. S. (2008). Managing and modeling the price reduction effect in mobile telecommunications traffic. Telecommunications Policy, 32, 468-479.
    21. Chandra, S., & Srivastava, S. C. (2015). Impact of telecom infrastructure and socio-economic factors on the growth of Indian telecom industry. Procedia Computer Science, 45, 794-803.
    22. Chiang, S. Y. (2012). An application of Lotka–Volterra model to Taiwan's transition from 200 mm to 300 mm silicon wafers. Technological Forecasting and Social Change, 79, 383-392.
    23. Chiang, S. Y., & Wong, G. G. (2011). Competitive diffusion of personal computer shipments in Taiwan. Technological Forecasting and Social Change, 78, 526-535.
    24. Choi, S. K., Lee, M. H., & Chung, G. H. (2001). Competition in Korean mobile telecommunications market: Business strategy and regulatory environment. Telecommunications Policy, 25(1-2), 25-138.
    25. Chou, H. H., & Zolkiewski, J. (2018). Coopetition and value creation and appropriation: The role of interdependencies, tensions and harmony. Industrial Marketing Management, 70, 25-33.
    26. EU Commission. (2002). Commission guidelines on market analysis and the assessment of significant market power under the community for electronic communication networks and services. 2002/C165/03, Brussels.
    27. Farrell, J., & Saloner, G. (1985). Standardization, compatibility, and innovation. the RAND Journal of Economics, 70-83.
    28. Garri, M. (2021). Coopetition, value co-creation, and knowledge-enhancement in the UK alpaca industry: A multi-level mechanism. European Management Journal, 39(5), 545-557.
    29. Gnyawali, D. R., Madhavan, R., He, J., & Bengtsson, M. (2016). The competition–cooperation paradox in inter-firm relationships: A conceptual framework. Industrial Marketing Management, 53, 7-18.
    30. Griliches, Z. (1957). Hybrid corn: An exploration in the economics of technological change. Econometrica, 25(4), 501-522.
    31. Griliches, Z. (1957). Hybrid corn: An exploration in economics of technological change (Doctoral dissertation, The University of Chicago).
    32. Guidolin, M., & Guseo, R. (2015). Technological change in the US music industry: Within-product, cross-product and churn effects between competing blockbusters. Technological Forecasting and Social Change, 99, 35-46.
    33. Guidolin, M., & Guseo, R. (2020). Has the iPhone cannibalized the iPad? An asymmetric competition model. Applied Stochastic Models in Business and Industry, 36(3), 465-476.
    34. Guidolin, M., & Manfredi, P. (2023). Innovation diffusion processes: Concepts, models, and predictions. Annual Review of Statistics and Its Application, 10, 451-473.
    35. Hoffmann, W., Lavie, D., Reuer, J. J., & Shipilov, A. (2018). The interplay of competition and cooperation. Strategic Management Journal, 39(12), 3033-3052.
    36. Horsky, D. (1990). A diffusion model incorporating product benefits, price, income and information. Marketing Science, 9(Fall), 342-365.
    37. Hsu, M. Y. (2011). Rivalry as a learning process of hostility. Working Paper, TIM, National Chengchi University.
    38. Hsu, M. Y., & Li, S. H. (2016). Asymmetric regulation, price elasticity of demand, and congestion. The 21st International Telecommunications Society Biennial Conference, Taipei, Taiwan.
    39. Hsu, M. Y., & Li, S. H. (2022). Price-cap regulation, price elasticity of demand, and quality of service. Academy of Management Proceedings, 2022(1), 16909. Briarcliff Manor, NY 10510: Academy of Management.
    40. Hung, H. C., Chiu, Y. C., & Wu, M. C. (2017a). Analysis of competition between IDM and fabless–foundry business models in the semiconductor industry. IEEE Transactions on Semiconductor Manufacturing, 30(3), 254-260.
    41. Hung, H. C., Chiu, Y. C., Huang, H. C., & Wu, M. C. (2017). An enhanced application of Lotka–Volterra model to forecast the sales of two competing retail formats. Computers and Industrial Engineering, 109, 325-334.
    42. Iimi, A. (2005). Estimating demand for cellular phone services in Japan. Telecommunications Policy, 29, 3-23.
    43. Jingjing, Y., & Yusheng, K. (2017). The ecological industrial cluster network coopetition model based on Lotka-Volterra theory. Science and Technology Management Research, 37, 176-179.
    44. Kalish, D. (1985). A new product adoption model with price, advertising and uncertainty. Management Science, 31, 1569-1585.
    45. Kalish, S. (1983). Monopolistic pricing with dynamic demand and production cost. Marketing Science, 2(Spring), 135-159.
    46. Karacuka, M., Haucap, J., & Heimeshoff, U. (2011). Competition in Turkish mobile telecommunications markets: Price elasticities and network substitution. Telecommunications Policy, 35, 202-210.
    47. Khana, N. T., Jung, G., Kim, J., & Kim, Y. B. (2019). Evolving competition between low-cost carriers and full-service carriers: The case of South Korea. Journal of Transport Geography, 74, 1-9.
    48. Kim, J., Lee, D. J., & Ahn, J. (2006). A dynamic competition analysis on the Korean mobile phone market using competitive diffusion model. Computers and Industrial Engineering, 51(1), 174-182.
    49. Kreng, V. B., & Wang, H. T. (2009). The interaction of the market competition between LCD TV and PDP TV. Computers and Industrial Engineering, 57(4), 1210-1217.
    50. Krishnan, T. V., Bass, F. M., & Jain, D. C. (1999). Optimal pricing strategy for new products. Management Science, 45(12), 1650-1663.
    51. Liu, H. (2010). Dynamic pricing in the video game console market: Skimming or penetration? Journal of Marketing Research, 47(June), 428-443.
    52. Lotka, A. J. (1920). Analytical note on certain rhythmic relations in organic systems. Proceedings of the National Academy of Sciences, 6(7), 410-415.
    53. Mahajan, V., Muller, E. and Bass, F.M. (1990) New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing, 54, 1-26.
    54. Mao, S., Zhu, M., Wang, X., & Xiao, X. (2020). Grey–Lotka–Volterra model for the competition and cooperation between third-party online payment systems and online banking in China. Applied Soft Computing, 95, 106501.
    55. Marasco, A., Picucci, A., & Romano, A. (2016). Market share dynamics using Lotka–Volterra models. Technological Forecasting and Social Change, 105, 49-62.
    56. Martin, C. A., & Witt, S. F. (1989). Accuracy of econometric forecasts of tourism. Annals of tourism Research, 16(3), 407-428.
    57. Nalebuff, B. J., & Brandenburger, A. M. (1997). Co‐opetition: Competitive and cooperative business strategies for the digital economy. Strategy and Leadership, 25(6), 28-33.
    58. NCC. (2013). The tariffs of telecommunications are going to be under regulations of intermediate services. NCC NEWS, 7(3), 17. (in Chinese)
    59. Parker, P. M. (1992). Pricing strategies in markets with dynamic elasticities.
    60. Pearl, R. (1924). Studies in human biology. Williams & Wilkins.
    61. Pearl, R., & Reed, L. J. (1920). On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proceedings of the national academy of sciences, 6(6), 275-288.
    62. Research, M. (2022). AMD sets all-time CPU market share record as Intel gains in desktop and notebook PCs. Retrieved from https://www.tomshardware.com/news/intel-amd-4q-2021-2022-market-share-desktop-notebook-server-x86
    63. Riquelme-Medina, M., Stevenson, M., Barrales-Molina, V., & Llorens-Montes, F. J. (2022). Coopetition in business ecosystems: The key role of absorptive capacity and supply chain agility. Journal of Business Research, 146, 464-476.
    64. Robinson, B., & Lakhani, C. (1975). Dynamic price models for new product planning. Management Science, 10, 1113-1122.
    65. Rogers, E. M., Singhal, A., & Quinlan, M. M. (2014). Diffusion of innovations. In An integrated approach to communication theory and research (432-448). Routledge.
    66. Schankerman, M. (1996). Symmetric regulation for competitive telecommunications. Information Economics and Policy, 8(1), 3-23.
    67. Smitalova, K., Smítalová, K., & Šujan, Š. (1991). A mathematical treatment of dynamical models in biological science. Ellis Horwood Limited.
    68. Stigler, G. J. (1971). The theory of economic regulation. The Bell Journal of Economics and Management, 2(1), 3-21.
    69. Sun, J., Ren, X., & Hao, S. Y. (2015). An evolutionary game theoretical analysis on inter-enterprises knowledge transfer and protection in the project cooperation network. Science and Technology Management Research, 35(18), 145-151. https://doi.org/10.3969/j.issn.1000-7695.2015.18.028
    70. Tang, Y., & Zhang, J. (2005). A competition model for two CPU vendors. Physica A: Statistical Mechanics and its Applications, 348, 465-480.
    71. Tsai, B.-H., & Li, Y. (2009). Cluster evolution of IC industry from Taiwan to China. Technological Forecasting and Social Change, 76, 1092-1104.
    72. Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1), 49-95.
    73. Vernon, R. (1992). International investment and international trade in the product cycle. In International economic policies and their theoretical foundations (pp. 415-435). Academic Press.
    74. Vives, X. (1984). Duopoly information equilibrium: Cournot and Bertrand. Journal of Economic Theory, 34(1), 71-94.
    75. Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature, 118(2972), 558-560.
    76. Wang, H., Yang, Y., & Yu, J. (2019). The impact of mobile telecommunications on economic growth in developing countries. Telecommunications Policy, 43(10), 101816.
    77. Wei, T., Zhu, Z., Li, Y., & Yao, N. (2018). The evolution of competition in innovation resource: a theoretical study based on Lotka-Volterra model. Technology Analysis and Strategic Management, 30(3), 295-310.
    78. Weingarten, M., & Stuck, B. (2001). It’s a stretch to believe in high price elasticity. Business Communications Review, January, 32-34.
    79. Wen-Lin Chu, Feng-Shang Wu, Kai-Sheng Kao, & David Yen. (2009). Diffusion of mobile telephony: An empirical study in Taiwan. Telecommunications Policy, 33, 506-520.
    80. Williamson, O. E. (1977). Predatory pricing: A strategic and welfare analysis. The Yale Law Journal, 87(2), 284-340.
    81. Xavier, P. (1995). Price cap regulation for telecommunications - How has it performed in practice? Telecommunications Policy, 19(8), 599-617.
    82. Xu, X., Xu, L., & Wang, X. (2023). Study on coopetition relationship simulation among M-commerce information service subjects based on Lotka-Volterra model. Journal of Management Analytics, 1-24.
    83. Zhang, Y., Guo, H., Sun, M., Liu, S., & Forrest, J. (2023). A novel grey Lotka-Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting. Energy, 264, 126-154.

    網頁
    1. GIGABYTE. (2019, October 8). AMD EPYC伺服器處理器的崛起過程. GIGABYTE. Retrieved from https://www.gigabyte.com/tw/Article/amd-server-cpu-rise-into-epyc(最後瀏覽日:2024年1月18日)。
    2. Ilumba, A. (2019, March 25). Whistleout. https://www.whistleout.com/CellPhones/Guides/5g-vs-4g-vs-3g(最後瀏覽日:2024年1月18日)。
    3. Telecomtrainer. (2023, December 20). https://www.telecomtrainer.com/2g-3g-4g-5g-difference/(最後瀏覽日:2024年1月18日)。
    4. 國家通訊傳播委員會 (NCC). (2024, February 13). 112年通訊傳播市場報告. Retrieved from https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=8&sn_f=49863(最後瀏覽日:2024年1月18日)。
    描述: 博士
    國立政治大學
    科技管理與智慧財產研究所
    104364504
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0104364504
    数据类型: thesis
    显示于类别:[科技管理與智慧財產研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML76检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈