政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152961
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52162067      Online Users : 818
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152961


    Title: 拓樸半金屬的非線性光電流
    Nonlinear Photocurrent of Topological Semimetals
    Authors: 許恆睿
    Xu, Heng-Rui
    Contributors: 許琇娟
    Hsu, Hsiu-Chuan
    許恆睿
    Xu, Heng-Rui
    Keywords: 外爾半金屬
    體光伏效應
    量子幾何張量
    Weyl semimetal
    Bulk photovoltaic effect
    Quantum geometric tensor
    Date: 2024
    Issue Date: 2024-08-05 15:06:43 (UTC+8)
    Abstract: 能帶拓樸對外爾半金屬的體光伏效應電流有相當密切的關係,像是量子幾何張量的虛部---貝里曲率和圓偏振光注入電流之間的關聯已被熟知。在線性能帶的假設下,三個循環排列的圓偏振光注入電導率加總後會正比於外爾點的手性。然而黎曼度量身為量子幾何張量的實部與傳輸特性的關係卻尚未被人清楚了解。本論文聚焦在探討二階光響應在交流電場下所產生的直流注入電流是如何被量子幾何張量的分佈影響。線偏振光引起的注入電流是由黎曼度量給出的,因此本文分析動量空間中黎曼度量的分佈,並引入改變對稱性的參數以調控電流。

    本論文以四能帶的緊束縛哈密頓量為例,引入延特定方向的磁化強度破壞時間反演對稱,計算其中一節點附近的注入電導率的所有分量。除了重現圓偏振光注入電導率與結點手性的關係,另外還發現於結點附近有兩類的線偏振光電導率皆與光頻率成正比關係。並透過分析動量空間的黎曼度量分佈,發現這些電流都是因為在節點附近的量子幾何張量切片上的不對稱所得出。
    在接著依序加入空間反演對稱破缺和應變項的情形下,其中三項線偏振光電導率失去正比特性,除此之外其他分量的電導率皆不受到空間反演對稱破缺和應變項的影響.

    透過了解外爾半金屬的線偏振光電導率特性,其線偏振光電流效應展現出作為低頻光感器的潛力。本論文強調了能帶拓樸對光電流的影響,也提供了計算量子幾何切片來探討能帶拓樸的作用。
    The bulk photovoltaic effect of Weyl semimetals is related to its band topology, such as the well-known relationship between the imaginary part of the quantum geometric tensor,
    Berry curvature, and the circularly polarized light induced injection current. Under the assumption of linear bands, the sum of the circularly polarized light induced injection
    conductivities in three orthogonal directions is proportional to the chirality of the Weyl point. However, the relationship between the quantum metric as the real part of the quantum geometric tensor and the transport properties is less explored. This thesis explores the relationship between the DC injection current and the quantum geometric tensor.

    In addition to reproducing the relationship between the circularly polarized light injection conductivity and node chirality, the injection current induced by linearly polarized light, given by the quantum metric, is analyzed, and the distribution of the quantum metric in momentum space is examined. Parameters altering symmetry are introduced
    to modulate the current. Using a four-band tight-binding Hamiltonian as an example, time-reversal symmetry is broken by introducing magnetization in a specific direction, and all components of the injection conductivity are calculated. Nonzero components of the conductivity tensor induced by linearly polarized light are identified. One class of
    complements shows a positive linear relationship between conductivity and the incident light frequency, while the other class shows a negative linear relationship. By analyzing the distribution of the quantum metric in momentum space, it is found that these currents arise due to asymmetry in the quantum geometric tensor slices near the node.

    Upon introducing spatial inversion symmetry breaking, three components of linear injection conductivities are no longer linearly proportional to incident light frequency. In
    contrast, other components of linear injection conductivities still remain the linearity in incident light frequency.

    This thesis emphasizes the impact of band topology on photocurrents and the potential of Weyl semimetals as low-frequency photodetectors.
    Reference: [1] M.-C.Chang. Lecture notes on topological insulators. (2017).
    [2] Hermann Weyl. Elektron und Gravitation. I. 56(5-6):330–352+, 1929.
    [3] B. Q. Lv, T. Qian, and H. Ding. Experimental perspective on three-dimensional
    topological semimetals. Rev. Mod. Phys., 93:025002, Apr 2021.
    [4] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice: (i). proof by
    homotopy theory. Nuclear Physics B, 185(1):20–40, 1981.
    [5] H.B. Nielsen and M. Ninomiya. Absence of neutrinos on a lattice: (ii). intuitive
    topological proof. Nuclear Physics B, 193(1):173–194, 1981.
    [6] M. M. Vazifeh and M. Franz. Electromagnetic response of weyl semimetals. Phys.
    Rev. Lett., 111:027201, Jul 2013.
    [7] Jing Liu, Fengnian Xia, Di Xiao, F. Javier García de Abajo, and Dong Sun.
    Semimetals for high-performance photodetection. Nature Materials, 19(8):830–837,
    July 2020.
    [8] J. E. Sipe and A. I. Shkrebtii. Second-order optical response in semiconductors.
    Phys. Rev. B, 61:5337–5352, Feb 2000.
    [9] Päivi Törmä. Essay: Where can quantum geometry lead us? Phys. Rev. Lett.,
    131:240001, Dec 2023.
    [10] Fernando De Juan, Adolfo G Grushin, Takahiro Morimoto, and Joel E Moore.
    Quantized circular photogalvanic effect in weyl semimetals. Nature communications,
    8(1):15995, 2017.
    [11] Tobias Holder, Daniel Kaplan, and Binghai Yan. Consequences of time-reversal-
    symmetry breaking in the light-matter interaction: Berry curvature, quantum
    metric, and diabatic motion. Phys. Rev. Res., 2:033100, Jul 2020.
    [12] D. Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polarization,
    Orbital Magnetization and Topological Insulators. Titolo collana. Cambridge
    University Press, 2018.
    [13] Alberto Cortijo, Dmitri Kharzeev, Karl Landsteiner, and Maria AH Vozmediano.
    Strain-induced chiral magnetic effect in weyl semimetals. Physical Review B,
    94(24):241405, 2016.
    [14] Yu-Ping Lin and Wei-Han Hsiao. Dual haldane sphere and quantized band geometry
    in chiral multifold fermions. Physical Review B, 103(8), February 2021.
    [15] Junyeong Ahn, Guang-Yu Guo, and Naoto Nagaosa. Low-frequency divergence and
    quantum geometry of the bulk photovoltaic effect in topological semimetals. Phys.
    Rev. X, 10:041041, Nov 2020.
    [16] Claudio Aversa and J. E. Sipe. Nonlinear optical susceptibilities of semiconductors:
    Results with a length-gauge analysis. Phys. Rev. B, 52:14636–14645, Nov 1995.
    [17] Qiong Ma, Su-Yang Xu, Ching-Kit Chan, Cheng-Long Zhang, Guoqing Chang,
    Yuxuan Lin, Weiwei Xie, Tomás Palacios, Hsin Lin, Shuang Jia, Patrick A. Lee,
    Pablo Jarillo-Herrero, and Nuh Gedik. Direct optical detection of weyl fermion
    chirality in a topological semimetal. Nature Physics, 13(9):842–847, May 2017.
    [18] Hsiu-Chuan Hsu, Jhih-Shih You, Junyeong Ahn, and Guang-Yu Guo. Nonlinear
    photoconductivities and quantum geometry of chiral multifold fermions. Physical
    Review B, 107(15), April 2023.
    [19] Hassan Shapourian, Taylor L. Hughes, and Shinsei Ryu. Viscoelastic response
    of topological tight-binding models in two and three dimensions. Phys. Rev. B,
    92:165131, Oct 2015.
    [20] S. X. Xu, H. Q. Pi, R. S. Li, T. C. Hu, Q. Wu, D. Wu, H. M. Weng, and N. L. Wang.
    Linear-in-frequency optical conductivity over a broad range in the three-dimensional
    dirac semimetal candidate ir2in8Se. Phys. Rev. B, 106:115121, Sep 2022.
    Description: 碩士
    國立政治大學
    應用物理研究所
    110755005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0110755005
    Data Type: thesis
    Appears in Collections:[Graduate Institute of Applied Physics] Theses

    Files in This Item:

    File Description SizeFormat
    500501.pdf2269KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback