English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51615814      Online Users : 810
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152850


    Title: 模擬ChatGPT導入政府資料開放平臺的使用體驗
    Simulating the User Experience of Integrating ChatGPT into Government Open Data Platforms
    Authors: 謝佾伶
    Hsieh, Yi-Ling
    Contributors: 蕭乃沂
    Hsiao, Nai-Yi
    謝佾伶
    Hsieh, Yi-Ling
    Keywords: ChatGPT
    政府資料開放
    使用體驗
    有用性
    易用性
    ChatGPT
    Government Open Data
    User Experience
    Usefulness
    Usability
    Date: 2024
    Issue Date: 2024-08-05 14:23:28 (UTC+8)
    Abstract: ChatGPT的問世改變了人類於日常生活中的瑣事,如文字撰寫、程式編輯、翻譯等等,ChatGPT都能夠處理,許多的政府也在思考如何將ChatGPT應用於政府業務之中,但礙於數據隱私的原因,ChatGPT導入的審查就越困難。因此本文將ChatGPT應用的想法用於政府資料開放平臺之中,透過其開放資料的性質,預先探討使用者對於ChatGP導入政府資料開放平臺做為輔助服務的使用體驗。
    本研究透過線上面訪並以Figma軟體模擬ChatGPT導入政府資料開放平臺的模擬介面,藉由模擬介面去了解平臺使用者的需求與期待,更近一步的去了解導入ChatGPT的政府資料開放平臺,對於吸引非資料分析專業族群前來使用與降低使用政府開放資料的門檻的影響。
    研究結果發現,導入ChatGPT後的政府資料開放平臺確實能夠帶來便利,降低使用門檻,但原先非政府資料開放平臺的使用者針對ChatGPT的導入與否,其關連性並不大,也就是說有了ChatGPT並不會吸引他們來使用政府資料開放平臺,主要原因是缺少了使用這些資料的動機。
    其次是導入ChatGPT對於政府資料開放平臺服務體驗的影響,使用者對於ChatGPT的導入大部分都是正面態度,但使用者非常在意ChatGPT導入政府資料開放平臺的控管機制及問責制度,希望可以讓政府資料開放平臺在使用生成式人工智慧過程中大幅度的降低負面影響。
    最後,本研究依研究結果對未來政府資料開放平臺導入ChatGPT提出四點實務建議,第一點建議政府資料開放平臺能夠與先前已導入ChatGPT的部門單位聯繫,向其借鏡當初的開發經驗,後續也能將這些機關納入政府資料開放平臺的評選委員,將導入經驗傳承至平臺中。第二點則是在未來如政府資料開放平臺確定要導入ChatGPT做為介面的話,或許可以考量於開發階段時,先進行為期半年至一年的內部測試,邀請數據分析專家、統計專家及相關領域的專業人士進行試用,以利於降低風險,並提高系統的可靠度。第三點則是在查詢機器人的頁面中,加上引導提示按鈕,像是資料年份、年齡層等等,這樣有助於使用者找到更精準的資料,也能避免使用者輸入內容太過廣泛,而使資料搜尋結果不佳的情形出現。第四點則是提供多元的機器人服務,讓機器人不僅僅只是查找資料,而是能夠連結不同資料集、不同政府單位的資料內容後進行分析,並依照使用者需求進行圖表繪製,判別趨勢變化,最終給予政策建議,將該功能發展成強大且具有吸引力的工具,也許就能帶給使用者幫助,藉此擴展使用族群。
    The advent of ChatGPT has transformed various human daily tasks such as writing, code editing, translation, and more. Many governments are considering integrating ChatGPT into their operations, but due to concerns about data privacy, the review process for its implementation is rather challenging. This paper explores the idea of applying ChatGPT to government open data platforms. By leveraging the open nature of these platforms, we aim to investigate user experiences with ChatGPT as an auxiliary service.
    This study uses online interviews and the Figma software to simulate the interface of integrating ChatGPT into a government open data platform. Through the simulated interface, we aim to understand the needs and expectations of platform users and further explore the impact of integrating ChatGPT on attracting non-data-analysis professionals and lowering the barrier to using government open data.
    The research results indicate that integrating ChatGPT into government open data platforms can indeed provide convenience and lower the usage threshold. However, for users who did not previously use these platforms, the existence of ChatGPT has little correlation with their decision. In other words, ChatGPT does not necessarily attract new users for government open data platforms due to a lack of motivation to use these data.
    Additionally, regarding the impact of ChatGPT integration on the user experience of government open data platforms, most users respond positively to this integration. However, they are quite concerned about the control procedure and accountability system of integrating ChatGPT into government open data platforms. They hope that the platforms can significantly reduce the potential negative impacts while implementing generative AI.
    Finally, based on the research results, this study proposes four practical suggestions for the future integration of ChatGPT into government open data platforms. First, we recommend government open data platforms to connect with departments that have previously integrated ChatGPT to learn from their development experiences. Subsequently, these agencies can be included as members of the evaluation committee for government open data platforms, passing on their integration experiences. Secondly, if the government open data platforms decide to use ChatGPT as an interface in the future, they could consider conducting an internal test for six months to a year during the development phase. Data analysis experts, statisticians, and professionals from related fields can be invited to test the system to reduce the risks and improve system reliability. Third, adding guided prompt buttons on the query robot's page, such as data year and age group, can help users find more precise data and avoid overly broad inputs that could lead to poor search results. Fourth, providing diverse robot services can enhance functionality. This means that the robot should not only search for data but also link and analyze content from different datasets and government units. Based on user needs, it can generate charts, identify trend changes, and ultimately offer policy recommendations. Developing this feature into a powerful and attractive tool can assist users and expand the user base.
    Reference: Alexopoulos, C., Saxena, S., Janssen, M., & Rizun, N.(2023). Whither the need and motivation for open government data (OGD) promotional strategies?, Digital Policy, Regulation and Governance, 25(2),153-168.
    Alexopoulos, C., Saxena, S., Loukis, E., Rizun, N., Maratsi, M., & Ali, M.(2023). ChatGPT application vis-a-vis Open Government Data (OGD): Capabilities, Public Values, Issues and a Research Agenda. Retrieved July 24, 2023, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4378771
    Alzahrani, L., Al-Karaghouli, W., & Weerakkody, V.(2017). Analysing the critical factors influencing trust in e-government adoption from citizens’ perspective: A systematic review and a conceptual framework. International Business Review, 26(1), 164-175.
    Ansari, B., Barati, M., & Martin, E. G.(2022). Enhancing the usability and usefulness of open government data: A comprehensive review of the state of open government data visualization research. Government Information Quarterly,39,1-15.
    Aydın, Ö., & Karaarslan, E.(2023). Is ChatGPT leading generative AI? What is beyond expectations?. Academic Platform Journal of Engineering and Smart Systems. https://ssrn.com/abstract=4341500
    Baig, A., Blumberg, S., Li, E., Sinha, M., Merrill, D., Pradhan, A., Xu, S., & Sukharevsky, A.(2023). Technology’s generational moment with generative AI: A CIO and CTO guide. McKinsey & Company, July 11. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/technologys-generational-moment-with-generative-ai-a-cio-and-cto-guide
    Barry, E., & Bannister, F.(2014). Barriers to open data release: A view from the top. Information Polity, 19(1), 129–152.
    Begany, G. M., & Martin, E. Yuan X.J.(2021). Open government data portals: Predictors of site engagement among early users of Health Data NY. Government Information Quarterly. https://doi.org/10.1016/j.giq.2021.101614
    Boychuk, M., Cousins, M., Lloyd, A., & Mackeigan, C.(2016). Do we need data literacy?Public perceptions regarding Canada’s open data initiative. Dalhousie Journal of Interdisciplinary Management .https://ojs.library.dal.ca/djim/article/view/6449
    Buckland,M.(1991).Information and Information Systems. New York:Greenwood Press.
    Chen, X.(2023). ChatGPT and Its Possible Impact on Library Reference Services. Internet Reference Services Quarterly,27,121-129.
    Chui, M., Roberts, R., Rodchenko, T., Singla, A., Sukharevsky, A., Yee, L., & Zurkiya, D.(2023). What every CEO should know about generative AI. May 23. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/what-every-ceo-should-know-about-generative-ai
    Chui, M., Yee, L., Hall, B., Singla, A., & Sukharevsky, A.(2023). The state of AI in 2023: Generative AI’s breakout year. August 1. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R.(1989). User Acceptance of computer technology: A comparison of two theoretical models. Management Science, 982-1003.
    Dawes, S. S., Vidiasova, L.& Parkhimovich, O.(2016).Planning and designing open government data programs:an ecosystem approach.Government Information Quarterly, 33(1),15-27.
    Donker, F. W., & Loenen, B. V.(2017). How to assess the success of the open data ecosystem. International Journal of Digital Earth, 10(3),284-306.
    Dwivedi, Y. K.(2023).“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management,71,1-63.
    Eva, A.M., Bollen, J., Zuidema, W., & Rooij, R.V.(2023). ChatGPT: five priorities for research. Nature Portfolio journals,614,224-226.
    Edinger, J.(2024). New Washington, D.C., Tool Uses Generative AI to Make Data Accessible. government technology, March 26. https://www.govtech.com/artificial-intelligence/new-washington-d-c-tool-uses-generative-ai-to-make-data-accessible
    Freed, B.(2023). ChatGPT said it will ‘revolutionize’ digital government. Human experts are more cautious. SCOOP NEWS GROUP, April 4. https://statescoop.com/chatgpt-government-digital-services/
    Fatih, K. A.(2023). The Art of ChatGPT Prompting: A Guide to Crafting Clear and Effective Prompts. Retrieved May 12, 2023, from https://fka.gumroad.com/l/art-of-chatgpt-prompting
    Gomperl, R. V., & Steyaert, J.(2002). Going Beyond Access-Accessibility of Government Information in the Electronic Media Age.Intercultural Communication 23 Conference and General Assembly IAMCR, Barcelona.
    Graves, A., Hendler, J.(2014). A study on the use of visualizations for open government data. Information Polity, 19,73-91.
    Huijboom, N., & Broek, T.(2011). Open data: An international comparison of strategies. European Journal of ePractice, 12(1), 4-16.
    IBM(2022).Global AI Adoption Index 2022.IBM. Retrieved May 12, 2023, from https://newsroom.ibm.com/2022-05-19-Global-Data-from-IBM-Shows-Steady-AI-Adoption-as-Organizations-Look-to-Address-Skills-Shortages,-Automate-Processes-and-Encourage-Sustainable-Operations
    Janssen, M., Charalabidis, Y., & Zuiderwijk, A.(2012). Benefits, adoption barriers and myths of open data and open government. Information Systems Management, 29(4),258-268.
    Knowledge Sourcing Intelligence(2022). Artificial Intelligence AI In Government Market. Retrieved May 13, 2023, from https://www.knowledge-sourcing.com/report/artificial-intelligence-ai-in-government-market
    Lund, F., Maor, D., Spielmann, N., & sukharevsky, A.(2023). Four essential questions for boards to ask about generative AI. McKinsey & Company, July 7. https://www.mckinsey.com/capabilities/quantumblack/our-insights/four-essential-questions-for-boards-to-ask-about-generative-ai
    Luthfi, A., Janssen, M., Crompvoets, J.(2020).Stakeholder tensions in decision-making for opening government data. Business Modeling and Software Design. https://doi.org/10.1007/978-3-030-52306-0_23
    Marco, S. D., Robles, J. M., & Antino, M.(2014). Digital skills as a conditioning factor for digital political participation. Communications-The European Journal of Communication Research, 39(1), 43-65.
    Mutambik, I., Almuqrin, A., Lee, J., Zhang, J. Z., Alomran, A., Omar, T., Floos, A., & Homadi, A.(2021). Usability of the G7 Open Government Data Portals and Lessons Learned. Sustainability. https://doi.org/10.3390/su132413740
    Nathan, H.(2023).The Art of Prompt Engineering with ChatGPT: A Hands-On Guide. Independently Published.
    Nikiforova, A., & Mcbride, K.(2021). Open government data portal usability: A user-centred usability analysis of 41 open government data portals. Telematics and Informatics. https://doi.org/10.1016/j.tele.2020.101539
    Open AI(2023). ChatGPT plugins. Retrieved September 15, 2023, from https://openai.com/blog/chatgpt-plugins
    Osagie E., Waqar M., Adebayo S., Stasiewicz A., Porwol L., & Ojo A.(2017). Usability evaluation of an open data platform. Digital Government Research. https://dl.acm.org/doi/10.1145/3085228.3085315
    Oxford Insights(2022). Government AI Readiness Index 2022. Retrieved May 12, 2023, from https://www.oxfordinsights.com/government-ai-readiness-index-2022
    Purwanto, A., Zuiderwijk, A., & Janssen, M.(2020). Transforming Government: People, Process and Policy, 14(1),1-30.
    Rana, N. P., Dwivedi, Y. K., Williams, M. D., & Weerakkody, V. (2015). Investigating success of an e-government initiative: Validation of an integrated IS success model. Information Systems Frontiers ,17,127-142.
    Ryan, R. M., & Deci, E. L.(2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67.
    Safarov, I., Meijer, A., & Grimmelikhuijsen, S.(2017). Utilization of open government data: A systematic literature review of types, conditions, effects and users. Information Polity, 22(1),1-24.
    Saxena, S., & Muhammed, I.(2018).Barriers to use open government data in private sector and NGOs in Pakistan. Information Discovery and Delivery, 46(1),67-75.
    Simonofski, A., Zuiderwijk, A., Clarinval, A., & Hammedi, W.(2022). Tailoring open government data portals for lay citizens: A gamification theory approach. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2022.102511
    Smith, B.(2023). Meeting the AI moment: advancing the future through responsible AI. Microsoft, February 2. https://blogs.microsoft.com/on-the-issues/2023/02/02/responsible-ai-chatgpt-artificial-intelligence/
    Souza, A. A. conceição de, D’angelo, M. J., & Filho, R. N. Lima.(2022). Effects of Predictors of Citizens' Attitudes and Intention to Use Open Government Data and Government 2.0. Government Information Quarterly. https://doi.org/10.1016/j.giq.2021.101663
    Talukder, S., Liang Shen, Talukder, F. H., & Bao,Y.(2019). Determinants of user acceptance and use of open government data : An empirical investigation in Bangladesh. Technology in Society,56,147-156.
    Thorsby, J., Stowers, G.N., Wolslegel, K., & Tumbuan, E.(2017). Understanding the content and features of open data portals in American cities. Government Information Quarterly, 34(1),53-61.
    Vincent, J.(2022). Open AI’s new chatbot can explain code and write sitcom scripts but is still easily tricked. The Verge. Retrieved May 14, 2023, from https://www.theverge.com/23488017/openai-chatbot-chatgpt-ai-examples-web-demo
    Vries, H. D., Bekkers, V., & Tummers, L.(2016). Innovation in the Public Sector:A Systematic Review and Future Research Agenda. Public Administration ,91(1), 146-166.
    Wang, H., & Lo, J.(2013). Determinants of citizens’intent to use government websites in Taiwan. Information Development,29(2),123-137.
    Welch, E. W., Hinnant, C. C., & Moon, M. J. (2005). Linking citizen satisfaction with e- government and trust in government. Journal of Public Administration Research and Theory, 15(3), 371-391.
    Wirtz, B. W., Weyerer, J. C., & Rösch, M. (2017). Citizen and open government: An empirical analysis of antecedents of open government data. International Journal of Public Administration, 41(4), 308-320.
    World Economic Forum(2022). A Blueprint for Equity and Inclusion in Artificial Intelligence. June 29. https://www.weforum.org/whitepapers/a-blueprint-for-equity-and-inclusion-in-artificial-intelligence/
    Zuiderwijk, A., & Reuver, M. D.(2021).Why open government data initiatives fail to achieve their objectives:Categorizing and prioritizing barriers through a global survey. Transforming Government:People, Process and Policy, 15, 4, 377–395.
    Zuiderwijk, A., Janssen, M., & Davis, C.(2014).Innovation with open data: essential elements of open ecosystems, Information Polity, 19(1), 17-33.
    Zuiderwijk, A., Janssen, M., Choenni, S., Meijer, R., & Alibaks, R. S.(2012). Socio-technical impediments of open data. Electronic Journal of eGovernment, 10(2),156-172.
    Amazon Web Services(2023)。什麼是生成式 AI。Amazon Web Services,2023。檢索日期2023年8月17日,取自:https://aws.amazon.com/tw/what-is/generative-ai/
    ANDY教什麼(2023)。【1分鐘就搞定: AI 帶來的數據分析革命】ChatGPT 的 [Code Interpreter] 功能讓資料視覺化變得前所未有的簡單。YouTube。檢索日期2023年8月3日,取自 HYPERLINK "https://www.youAmazon Web Services(2023)。什麼是生成式 AI。Amazon Web Services,2023。檢索日期2023年8月17日,取自:https://aws.amazon.com/tw/what-is/generative-ai/
    ANDY教什麼(2023)。【1分鐘就搞定: AI 帶來的數據分析革命】ChatGPT 的 [Code Interpreter] 功能讓資料視覺化變得前所未有的簡單。YouTube。檢索日期2023年8月3日,取自https://www.youtube.com/watch?v=9z3Ln8coBq4&ab_channel=ANDY%E6%95%99%E4%BB%80%E9%BA%BC
    Babbie, E.(2016)。社會科學研究方法(14版)。林秀雲(譯)。台北市:雙葉書廊。434-481。
    Casetext(2023)。CoCounsel AI法律助理。Casetext官網。檢索日期2023年8月3日,取自https://casetext.com/
    Chris(2023)。新加坡政府:正準備導入 ChatGPT,幫公務員寫報告。INSIDE關鍵評論網媒體集團,2023年2月16日。https://www.inside.com.tw/article/30754-SINGAPORE-civil-servants-to-soon-use-chatgpt-to-help-with-research-speech-writing
    Google Cloud(2022)。什麼是人工智慧(AI)。Google Cloud。檢索日期:2023年7月10日。https://cloud.google.com/learn/what-is-artificial-intelligence?hl=zh-tw
    Google Cloud(2023)。生成式 AI 範例。Google Cloud。檢索日期2023年8月17日,取自:https://cloud.google.com/use-cases/generative-ai?hl=zh-tw
    GOSKY(未註明)。ChatGPT與Chatbot傻傻分不清?淺談為何聊天機器人與 ChatGPT密不可分。GOSKY。檢索日期:2023年7月10日。https://www.goskyai.com/tw-blog/chatgpt-vs-chatbot
    HeterMedia(2023)。CHATGPT和傳統聊天機器人有何差別?哪種對我的業務更有效益。HeterMedia。2023年5月23日。https://www.hetermedia.com/zh-hans/chatgpt%E5%92%8C%E5%82%B3%E7%B5%B1%E8%81%8A%E5%A4%A9%E6%A9%9F%E5%99%A8%E4%BA%BA%E6%9C%89%E4%BD%95%E5%B7%AE%E5%88%A5%EF%BC%9F%E5%93%AA%E7%A8%AE%E5%B0%8D%E6%88%91%E7%9A%84%E6%A5%AD%E5%8B%99%E6%9B%B4/
    Microsoft Taiwan(2023)。台灣微軟「生成式人工智慧大進擊.解碼公共服務新篇章」工作坊。Microsoft Taiwan YouTube,2023年3月27日。https://www.youtube.com/watc h?v=vDR6NO02Ecs&list=PL7_Aw6-16RNtkSNRDJnCZ77XT5qRhSVS1&index=2&t=3s&ab_channel=MicrosoftTaiwan
    MoneyDJ(2023)。微軟傳將幫客戶創 ChatGPT 聊天機器人,輝達股價飆。財經新報,2023年2月8日。https://finance.technews.tw/2023/02/08/microsoft-will-let-companies-create-their-own-custom-versions-of-chatgpt/
    孔令傑(2023)。AI對人類構成深遠風險?孔令傑:了解ChatGPT適合的使用場景,才能正確駕馭。台灣事實查核中心,2023年4月5日。https://tfc-taiwan.org.tw/articles/8979
    王佐銘(2023)。ChatGPT爆紅專家怎麼看AI?事實驗證、檢查成最大重點。匯流新聞網,2023年3月22日。https://tw.news.yahoo.com/news/chatgpt%E7%88%86%E7%B4%85%E5%B0%88%E5%AE%B6%E6%80%8E%E9%BA%BC%E7%9C%8Bai-%E4%BA%8B%E5%AF%A6%E9%A9%97%E8%AD%89-%E6%AA%A2%E6%9F%A5%E6%88%90%E6%9C%80%E5%A4%A7%E9%87%8D%E9%BB%9E-044820031.html
    王宏仁(2023)。【GPT4企業實例】摩根士丹利財管靠GPT 4解讀龐大知識資產,讓上萬理財顧問的Chatbot助手再升級。iThome,2023年3月16日。https://www.ithome.com.tw/news/155956
    王秀江(2023)。印度AI判決首例!法官用ChatGPT協助審判 結果出爐。Newtalk新聞,2023年4月1日。https://tw.news.yahoo.com/news/%E5%8D%B0%E5%BA%A6ai%E5%88%A4%E6%B1%BA%E9%A6%96%E4%BE%8B-%E6%B3%95%E5%AE%98%E7%94%A8chatgpt%E5%8D%94%E5%8A%A9%E5%AF%A9%E5%88%A4-%E7%B5%90%E6%9E%9C%E5%87%BA%E7%88%90-053210524.html
    王道維、林昀嫺(2020)。如何用AI創造社會共善?──AI公共化的契機。台灣人工智慧行動網,2020年8月14日。https://ai.iias.sinica.edu.tw/how-to-create-common-good-in-society-with-ai/
    行政院(2023)。政院通過「使用生成式AI參考指引(草案)」報告 陳揆:觀察趨勢滾動修正 以兼顧行政效率與民眾信任感。行政院全球資訊網,8月31日。https://www.ey.gov.tw/Page/9277F759E41CCD91/e63572a7-fb79-4c02-9ea3-b731e7c06a56
    政府資料開放平臺(未註明)。什麼是政府資料開放?為什麼要推動政府資料開放?有什麼好處。政府資料開放平臺。檢索日期:2023年7月10日。https://data.gov.tw/faqs/1463
    洪瑞琴(2023)。不必禁忌、畏懼 南市教育局率先全國研發ChatGPT教學模組。自由時報網,2023年3月31日。https://news.ltn.com.tw/news/life/breakingnews/4257199
    許鈺屏(2023)。人工智慧是什麼?AI應用案例、技術、未來發展都有的必修知識包來了。未來城市,2023年4月11日。https://futurecity.cw.com.tw/article/2228
    許嘉芳(2022)。世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書。財團法人資訊工業策進會科技法律研究所,2022年10月。https://stli.iii.org.tw/article-detail.aspx?no=16&tp=1&d=8890
    許靜之(2023)。組織如何導入ChatGPT?中研院:從做FAQ等「高影響、低複雜」任務開始。未來城市,2020年6月14日。https://futurecity.cw.com.tw/article/3072
    通傳會(2023)。112年通訊傳播市場報告。國家通訊傳播委員會,12月28日。https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=5023&cate=0&keyword=&is_history=0&pages=0&sn_f=49716
    陳志雄(2016)。做好軟體效能監控管理,持續精進Open Data應用服務品質。叡揚資訊,2016年10月11日。https://www.gss.com.tw/focus/news-center/1617-better-application-performance-and-open-data-quality
    陳柔蓁(2023)。拚台灣首個導入ChatGPT的地方政府 花蓮縣只花3個月。CTWANT王道旺台網,2023年7月6日。https://www.ctwant.com/article/267840
    曾依璇(2023)。日媒:日本政府將採ChatGPT技術 用於文書與分析。中央社,2023年7月27日。https://www.cna.com.tw/news/aopl/202307270089.aspx
    曾憲立、蕭乃沂、廖興中(2022)。政府資料開放與應用的下一哩路:我國資料交易與定價策略之探討。政治科學論叢,(94),47-82。
    湯皓茹(2023)。日政府第一棒!農林水產省本月起將用 ChatGPT 更新申報說明書。INSIDE關鍵評論網媒體集團,2023年4月19日。https://www.inside.com.tw/article/31371-Japan-Government-eMAFF-update-ChatGPT
    黃仁志(2023)。生成式AI的應用、風險與對應政策。經濟前瞻,(208),80-86。
    黃奕軒(2023)。摘要法條、準備證詞、分析合約都可用,AI法律公司Casetext以20億元賣給路透社。數位時代,2023年7月4日。https://meet.bnext.com.tw/articles/view/50500
    微軟新聞中心(2023)。中山附醫與台灣微軟 打造智能友善護理執業環境。Microsoft Taiwan,2023年7月3日。https://news.microsoft.com/zh-tw/chungshanhospital/
    楊正海(2023)。ChatGPT運用於北市府市政治理? 議員:恐有資安疑慮。聯合新聞網,2023年4月20日。https://udn.com/news/story/7323/7111368
    楊晴(2023)。南韓公務員學用ChatGPT 用AI助提升行政效率。TVBS新聞網,2023年3月7日。https://news.tvbs.com.tw/world/2061304
    鉅亨網(2023)。日本政府敞開雙臂擁抱 ChatGPT?OpenAI 考慮在日設辦公室。TechOrange科技報橘,2023年4月11日。https://buzzorange.com/techorange/2023/04/11/sam-altman-japan/
    廖洲棚、廖興中、黃心怡(2018)。開放政府服務策略研析調查:政府資料開放應用模式評估與民眾參與公共政策意願調查(編號:NDC-MIS-106-003)。國家發展委員會。https://www.grb.gov.tw/search/planDetail?id=12119533
    劉閔(2023)。再窮都要投資 英國發展AI技術對抗美中。Tech Nice科技島,2023年4月27日。https://www.technice.com.tw/chatgpt/50333/
    劉瓊(2023)。ChatGPT :AI革命。香港中和出版。
    潘競恆、林嘉鴻(2009)。以可得性與可近性建構政府資訊透明評估指標之初探。發表於 TASPAA 年會暨學術研討會,中山大學公共事務研究所,高雄。
    鄭淑婷(2023)。全國首例 桃園1999案件以ChatGPT分析。自由時報網,2023年4月19日。https://news.ltn.com.tw/news/Taoyuan/paper/1578297
    戴辰(2023)。彰化縣政府 東海大學 台灣微軟共同擔任AI產業造浪者。工商時報,2023年8月2日。https://www.ctee.com.tw/news/20230802700896-431202
    鍾清章(2019)。迎接人工智慧(AI)社會時代的來臨。品質月刊,55(1),11-17。
    簡嘉宏(2023)。不讓AI扮演上帝、美英立法積極規範。遠見,2023年5月11日。https://www.gvm.com.tw/article/102572
    饒志堅、黃騰皜(2023)。ChatGPT於政府統計應用之初探與想像。主計月刊,(809),86-93。
    Description: 碩士
    國立政治大學
    公共行政學系
    109256035
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0109256035
    Data Type: thesis
    Appears in Collections:[公共行政學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    603501.pdf4750KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback