政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/152840
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113656/144643 (79%)
造訪人次 : 51702521      線上人數 : 310
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/152840


    題名: 應用人工智慧及數位化工具於銀行授信作業之研究-以C銀行為例
    作者: 張佩瑜
    Chang, Pei-Yu
    貢獻者: 蔡瑞煌
    林靖庭

    張佩瑜
    Chang, Pei-Yu
    關鍵詞: 銀行授信
    人工智慧
    Credit
    Artificial intelligence
    日期: 2024
    上傳時間: 2024-08-05 14:18:46 (UTC+8)
    摘要: 台灣金融研訓院(2022)報告指出,近90%的臺灣銀行業者已導入人工智慧(AI)、大數據及機器人流程自動化(RPA)技術,這些技術在未來將對銀行業務產生深遠影響,並且可能會改變其經營模式。授信是銀行的核心業務,其作業效率會直接影響銀行的營運績效,本研究以C銀行企業授信作業流程作為研究對象,探討將人工智慧及數位化工具導入C銀行企業授信作業中,並提出具體的應用方案,再與專家進行深度訪談評估應用方案在作業流程中運用的可行性和實用性。
    本研究發現,人工智慧及數位化工具在銀行授信作業中的應用極具潛力,可提升作業效率和服務品質,但與客戶互動關係仍是銀行不可替代的核心競爭力。銀行在導入相關應用時,可以優先導入業務自動化的相關應用,能顯著提升作業效率和減少人力成本;讓工具作為輔助,保持人機協作平衡,同時提高效率及維持服務品質;管理階層應務實地評估實際需求,以避免不必要的投資及資源浪費;提供充分的教育訓練,可以讓應用方案順利推行及提升應用效果。
    According to a report by the Taiwan Academy of Banking and Finance(2022), nearly 90% of Taiwan's banking industry has adopted artificial intelligence, big data, and robotic process automation technologies. These technologies are expected to have a profound impact on banking operations in the future and may change their business models. Loans and credit businesses are core operations of banks. This thesis focuses on the corporate credit operation process of Bank C, researching the application of AI and digital tools in the bank's corporate credit operations, proposing specific plans and interviewing experts to evaluate the feasibility and practicality of their use in the process.
    According to the results of this thesis, the application of AI and digital tools in bank credit operations has great potential to improve operational efficiency and service quality. However, customer interaction management remains an irreplaceable core competitive advantage for banks. When introducing related applications, banks can prioritize the implementation of business process automation tools, which can significantly enhance efficiency and reduce costs. Human-machine collaboration enhances efficiency while maintaining service quality. Conducting needs assessment can help avoid unnecessary investments and waste. Providing adequate training can ensure the smooth implementation of application plans and enhance their effectiveness.
    參考文獻: 中華民國銀行公會(2023)。中華民國銀行公會會員授信準則。
    中華民國銀行公會(2023)。中華民國銀行公會會員徵信準則。
    中華民國銀行公會(2024)。金融機構運用人工智慧技術作業規範。
    中國信託銀行(2020年7月21日)。以客為本數位轉型新思維—無所不在、無時不在,中國信託有溫度的數位服務。https://www.ctbcbank.com/twrbo/zh_tw/index/ctbc_article/digital_article/blog_digital_ondemand/NB2020072859.html
    中國信託銀行(2024年4月18日)。金檢聯防再進化打造詐騙預警偵測機制。https://www.ctbcbank.com/twrbo/zh_tw/index/ctbc_article/digital_article/blog_digital_ondemand/NB2024041823.html
    玉山銀行。金融影響力。https://www.esunfhc.com/zh-tw/esg/finance/fintech
    汪海清(2004)。企業徵信調查實務。財團法人台灣金融研訓院。
    李昀璇(2023年11月25日)。臺灣多家銀行公開展示生成式AI應用研究,包含虛擬行員和內部輔助工具。https://www.ithome.com.tw/news/160008
    林左裕(2023年6月13日)。金融放款、AI與外部估價可降低詐貸及泡沫風險。https://rer.nccu.edu.tw/article/detail/2306131459851
    林金定, 嚴嘉楓, & 陳美花(2005)。質性研究方法:訪談模式與實施步驟分析。身心障礙研究季刊,3(2),122-136。http://dx.doi.org/10.30072/JDR.200506.0005
    金融監督管理委員會(2015年1月13日)。打造數位化金融環境3.0全面啟動。https://www.fsc.gov.tw/ch/home.jsp?id=96&parentpath=0,2&mcustomize=news_view.jsp&dataserno=201501130003&toolsflag=Y&dtable=News
    金融監督管理委員會銀行局(2024)。金融業務統計輯要第555期。https://www.fsc.gov.tw/webdowndoc?file=/stat/abs/11212.pdf
    財團法人台灣金融研訓院(2023)。銀行授信實務(2023年版)。
    財團法人台灣金融研訓院(2022)。我國銀行業金融科技創新與數位轉型大調查。https://www.tabf.org.tw/Article.aspx?id=4053&cid=1
    倍力資訊。年度最夯話題:機器人流程自動化RPA到底是什麼?https://cpm.mpinfo.com.tw/article_d.php?lang=tw&tb=1&cid=20&id=261
    陳昇瑋、溫怡玲(2019)。人工智慧在台灣。天下雜誌。
    第一金控(2023)。2022年永續報告書。
    國泰金控(2019年5月31日)。國泰智能客服「阿發」海內外獲雙獎肯定。https://www.cathayholdings.com/holdings/lastest_news/news_archive/newsarticle?newsID=9Q3PAgPOxUWpwNhmNk3mrg
    黃哲斌(2023年7月3日)。We Are Frienemy!人工智慧如何改變新聞業?獨立評論@天下。https://opinion.cw.com.tw/blog/profile/51/article/13795
    黃健雄(2020)。介接公務機關資料介紹及作業管理規範說明。金融聯合徵信第三十六期。
    彰化銀行(2024)。2023年永續報告書。
    彰化銀行(2024)。2023年年報。
    熊治民(2023年7月19日)。生成式AI在製造領域應用展望。https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=490
    AWS. 什麼是生成式 AI? https://aws.amazon.com/tw/what-is/generative-ai/
    CB Insights.(2023). Generative AI Bible: The ultimate guide to genAI disruption. https://www.cbinsights.com/research/report/generative-ai-bible/
    Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard business review, 96(1), 108-116.
    Financial Stability Board.(2017). Artificial intelligence and machine learning in financial services Market developments and financial stability implications. https://www.fsb.org/wp-content/uploads/P011117.pdf
    GlobeNewswire.(January 12, 2022). Video conferencing market value worldwide in 2022 and 2027 (in billion U.S. dollars) [Graph]. In Statista. Retrieved January 15, 2024, from https://www.statista.com/statistics/1293045/video-conferencing-market-value-worldwide/
    Goodell, J. W., Kumar, S., Lim, W. M., & Pattnaik, D.(2021). Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. Journal of Behavioral and Experimental Finance, 32, 100577.
    Kontrimas, V., & Verikas, A. (2011). The mass appraisal of the real estate by computational intelligence. Applied Soft Computing, 11(1), 443-448.
    Kok, N., Koponen, E. L., & Martínez-Barbosa, C. A.(2017). Big data in real estate? From manual appraisal to automated valuation. The Journal of Portfolio Management, 43(6), 202-211.
    Königstorfer, F., & Thalmann, S.(2020). Applications of Artificial Intelligence in commercial banks–A research agenda for behavioral finance. Journal of behavioral and experimental finance, 27, 100352.
    McKinsey & Company.(2018). An executive’s guide to AI. https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/An%20executives%20guide%20to%20AI/Executives-guide-to-AI
    McKinsey & Company.(2021). Operationalizing machine learning in processes. https://www.mckinsey.com/capabilities/operations/our-insights/operationalizing-machine-learning-in-processes
    McKinsey & Company.(2023a). The economic potential of generative AI: The next productivity frontier. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-ai-the-next-productivity-frontier#introduction
    McKinsey & Company.(2023b). How can generative AI add value in banking and financial services? https://www.mckinsey.com/featured-insights/lifting-europes-ambition/videos-and-podcasts/how-can-generative-ai-add-value-in-banking-and-financial-services#/
    McKinsey & Company.(2024). What is generative AI? https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-generative-ai
    NVIDIA.(2023). State of AI in Financial Services: 2023 Trends. https://resources.nvidia.com/en-us-state-ai-report
    OpenAI. Introducing Whisper. https://openai.com/research/whisper
    Prabhdeep Singh(August 3, 2020). What Are AI and RPA: The Differences, Hype, and When to Use Them Together. https://www.uipath.com/blog/automation/ai-rpa-differences-when-to-use-them-together
    Syed, R., Suriadi, S., Adams, M., Bandara, W., Leemans, S. J., Ouyang, C., ... & Reijers, H. A.(2020). Robotic process automation: contemporary themes and challenges. Computers in Industry, 115, 103162.
    Shidaganti, G., Salil, S., Anand, P., & Jadhav, V.(2021, August). Robotic process automation with AI and OCR to improve business process. In 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (pp. 1612-1618). IEEE.
    UiPath. Robotic Process Automation(RPA).https://www.uipath.com/rpa/robotic-process-automation
    描述: 碩士
    國立政治大學
    國際金融碩士學位學程
    111ZB1068
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0111ZB1068
    資料類型: thesis
    顯示於類別:[國際金融碩士學位學程] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.



    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋