English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51575313      Online Users : 867
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/152819
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/152819


    Title: 時間序列生成模型應用於股票走勢預測
    Time series generative modeling applied to stock trend prediction
    Authors: 林宜佑
    Lin, Yi-Yu
    Contributors: 蔡炎龍
    Tsai, Yen-Lung
    林宜佑
    Lin, Yi-Yu
    Keywords: 深度學習
    資料增強
    TSGM
    時間序列
    卷積神經網路
    長短期記憶神經網路
    孿生神經網路
    對比學習
    股票走勢預測
    Deep Learning
    Data Augmentation
    TSGM
    Time Series
    CNN
    LSTM
    Siamese Networks
    Contrastive Learning
    Stock Trend Prediction
    Date: 2024
    Issue Date: 2024-08-05 14:11:59 (UTC+8)
    Abstract: 資料增強是深度學習中的關鍵技術和議題。深度學習依賴大量且多樣化的資料來訓練模型,透過人工技術對原始資料進行微幅變化以增加資料量是常用的方法。在時間序列資料方面,資料增強同樣適用,但針對時間序列的資料增強技術目前並不常見,本文嘗試將股票資訊作為時間序列數據,使用時間序列生成模型(TSGM)進行數據增強,並對幾種常見的時間序列數據增強方法進行了比較。我們利用長短期記憶網路、卷積神經網路和孿生對比學習進行預測,在比較它們的結果後,我們發現以股票走勢預測方面來說,對比學習的效果相對突出,而且每種模型在經過資料增強後,預測表現都有所提升。
    Data augmentation is a key technique and topic in deep learning. Deep learning relies on large and diverse datasets to train models. Using manual techniques to slightly alter the original data to increase its size is a common approach. In time series data, data augmentation is also applicable, although it's not widely used. In this article, we used stock information as time series data and applied time series generative modeling (TSGM) for data augmentation. We compared several common time series data augmentation methods. To make predictions, we used long short-term memory network (LSTM), convolutional neural network (CNN) and Siamese contrastive learning. After comparing their results, we found that, for stock trend prediction, contrastive learning was relatively effective. Every model showed improved prediction performance after data augmentation.
    Reference: [1] Yihao Ang, Qiang Huang, Yifan Bao, Anthony KH Tung, and Zhiyong Huang. Tsgbench:Time series generation benchmark. arXiv preprint arXiv:2309.03755, 2023.
    [2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. Signature verification using a” siamese” time delay neural network. Advances in neural information processing systems, 6, 1993.
    [3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.
    [4] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758, 2021.
    [5] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.
    [6] Thomas Epelbaum. Deep learning: Technical introduction. arXiv preprint
    arXiv:1709.01412, 2017.
    [7] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.
    [8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
    [9] A Graves, M Liwicki, S Fernandez, R Bertolami, H Bunke, and J Schmidhuber. A novel connectionist system for improved unconstrained handwriting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5), 2009.
    [10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33:21271–21284, 2020.
    [11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9729–9738, 2020.
    [12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.
    [13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
    [14] Arthur Le Guennec, Simon Malinowski, and Romain Tavenard. Data augmentation for time series classification using convolutional neural networks. In ECML/PKDD workshop on advanced analytics and learning on temporal data, 2016.
    [15] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.
    [16] Alexander Nikitin, Letizia Iannucci, and Samuel Kaski. Tsgm: A flexible framework for generative modeling of synthetic time series. arXiv preprint arXiv:2305.11567, 2023.
    [17] Khandakar M Rashid and Joseph Louis. Window-warping: A time series data augmentation of imu data for construction equipment activity identification. In ISARC. Proceedings of the international symposium on automation and robotics in construction, volume 36, pages 651–657. IAARC Publications, 2019.
    [18] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6):386, 1958.
    [19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.
    [20] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.
    [21] HR Xu, Bo Xu, and KW Xu. Analysis on application of machine learning in stock forecasting. Computer Engineering and Applications, 56(12):19–24, 2020.
    [22] Jan Yen. Time series representation learning for stock market prediction. 2021.
    Description: 碩士
    國立政治大學
    應用數學系
    111751004
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0111751004
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100401.pdf2317KbAdobe PDF0View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback